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a b s t r a c t

A linear sampling method for an elastic half-space is developed to reconstruct fluctuations in the wave-
field. The starting point of the formulation is the near-field equation that was also used by Baganas et al.
(2006). Instead of examining the norm of the solution of the near-field equation, we define a solvability
index in order to obtain the spatial distribution of the amplitude of the solvability index and thus describe
the location of the fluctuations. A numerical method for the evaluation of the index is also provided for a
simplified algorithm; this method is based on a projection theorem for a Hilbert space and a singular
value decomposition. Numerical calculations were performed, and the results validated the efficiency
of the proposed method for reconstructing the fluctuations of a wavefield.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Inverse scattering analysis has a long history due to its inherent
interest, as well as its applications in the fields of geophysical
exploration, site characterization, medical imaging, nondestructive
testing, and many other areas. Colton and Kress (1998) surveyed
and reported a vast number of articles on inverse scattering anal-
yses of acoustic and electromagnetic wave propagation. During
the past ten years, many significant articles in this field have been
published. For example, Guzina et al. (2003) used the regularized
boundary integral equation method to solve the problem of map-
ping underground cavities. Pelekanos et al. (2004) presented a con-
trast source inversion method in a 2D elastic wavefield. Campman
et al. (2006) formulated a method to estimate the wavefield that
would have been measured if there were no near-receiver hetero-
geneities. Gélis et al. (2007) carried out a 2D full elastic waveform
inversion using the Born and Rytov approximations. Romdhane
et al. (2011) applied a 2D full waveform inversion to a shallow
structure with complex topography. The authors’ research group
also presented a fast method for solving a volume integral equation
(Touhei, 2009, 2011; Touhei et al., 2009) and applied it to an
inverse scattering analysis (Touhei et al., 2014).

Among the various methods for the inverse scattering analysis,
a linear sampling method, presented by Colton and Kirsch (1996),

reconstructs the supports of the scatterers by tracing the norm of
the solution of the far-field equation without information about
the type of boundary conditions on the scatterers. A factorization
method, presented by Kirsch (2011), reconstructs the support of
scatterers by decomposing the far-field operator and examining
its range, instead of solving the far-field equation. Colton and
Kirsch (1996) used a linear sampling method with a 2D scalar
Helmholtz equation for the far-field equation, but Fata and
Guzina (2004) proposed a linear sampling method that uses the
near-field equation. They provided the mathematical details of
the near-field equation and then used it to analyze the reconstruc-
tion of cavities embedded in a 3D elastic half-space. Baganas et al.
(2006) extended the method of the near-field equation to the
inverse transmission problem of an elastic half-space. Guzina and
Madyarov (2007) used a linear sampling method to reconstruct
scatterers in piecewise-homogeneous domains. The authors’
research group also used a linear sampling approach to evaluate
the location and spatial spread of the fluctuations, and we ensured
the accuracy of the reconstructed amplitudes by using the fast vol-
ume integral equation method (Touhei et al., 2014). In that paper,
we presented only a brief outline of our method and its results, and
a detailed description of the method and numerical results were
left as an area of future work.

The purpose of the present article is to provide a detailed math-
ematical description of our method for evaluating the location and
spatial spread of fluctuations in an elastic half-space and to provide
numerical examples. The inversion equation used in this article is
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the near-field equation, which was also used by Fata and Guzina
(2004) and Baganas et al. (2006). Instead of using the divergence
properties of the near-field equation, we developed a solvability
index for the equation; the spatial distribution of the fluctuations
corresponds to the spatial distribution of the amplitude of the solv-
ability index.

The organization of this paper is as follows.
In order to develop the concept of the solvability index of the

near-field equation, we review the basic results of Fata and
Guzina (2004) and Baganas et al. (2006), and we employ a method
for the factorization of the operator (Kirsch, 2011). Using these
results, we present the mathematical properties of the solvability
index. Next, we present a method for evaluating the solvability
index; this method is based on a projection theorem for a Hilbert
space. After providing the formulation for the inverse scattering
analysis, several numerical examples are presented to show the
accuracy of this method. The intended application of the present
method is to detect the spatial spreads of localized fluctuations
in homogeneous background structures with high-velocity waves;
an example of this is S waves with a velocity of 1 km/s.

2. Theoretical Formulation

2.1. Definition of the problem and the basic equation

Fig. 1 shows the wave problem defined in this article. The wave-
field is a 3D elastic half-space in which there are fluctuations in
contrast to a homogeneous background structure. On the free sur-
face of the wavefield, there are both source and observation sur-
faces, which are denoted by C1 and C2, respectively. Distributed
loads are applied to C1 so that incident waves are scattered, and
these are observed at C2. The problem defined in this article is as
follows:

Definition of the problem We consider using information from
the distributed loads at C1 and the observed scattered waves at C2

to reconstruct the spatial spread and the location of the
fluctuations.

As shown in Fig. 1, a Cartesian coordinate system is employed to
express the wavefield; the vertical axis is denoted by x3. A spatial
point in the wavefield is expressed as

x ¼ ðx1; x2; x3Þ 2 R2 � Rþ ¼ R3
þ ð1Þ

where the subscript index indicates the component of the Cartesian
coordinate system. The free boundary of the elastic half-space,
denoted by B, is at x3 ¼ 0. In the following, the summation conven-
tion is applied to the subscript indexes describing the Cartesian
coordinate system. Using the summation convention, the scalar
product of wavefunctions is defined as follows:

ui; wið ÞL2ðCkÞ ¼
Z

Ck

u�i ðxÞwiðxÞdCkðxÞ; ui;wi 2 L2ðCkÞ ð2Þ

where k takes 1 or 2. The L2 norm is defined as the scalar product,
which is represented in the following form:

kuik
2
L2ðCkÞ ¼ ui; uið ÞL2ðCkÞ

ð3Þ

The Lamé constants and the mass density that characterize the
wavefield are expressed as

kðxÞ ¼ k0 þ ~kðxÞ
lðxÞ ¼ l0 þ ~lðxÞ
qðxÞ ¼ q0 þ ~qðxÞ; ðx 2 R3

þÞ
ð4Þ

where k0;l0 are the background Lamé constants, and q0 is the mass
density. Their respective fluctuations are ~k, ~l, and ~q. The fluctua-
tions are assumed to be characterized as

~kðxÞ; ~lðxÞ; ~qðxÞ 2 C1
0ðR3

þÞ ð5Þ

We define the support of the fluctuations E such that

E ¼ supp ~kðxÞ [ supp ~lðxÞ [ supp ~qðxÞ ð6Þ

and we let @E express the boundary of E. Namely, E can be expressed
by

E ¼ Eo [ @E ð7Þ

where Eo is the set of internal points of E. In addition, we assume
that the complementary set of E, denoted by Ec , is connected. In
addition, the free boundary B and the fluctuated regions are
disjoint:

E \ B ¼ ; ð8Þ

The time dependency is assumed to be expðixtÞ, where x is the
circular frequency, and t is the time. Based on the time depen-
dency, the governing equation and boundary condition for the
wavefield are

Lijð@ÞwjðxÞ ¼ �Nijð@; xÞwjðxÞ

njðxÞTijkð@ÞwkðxÞ ¼
siðxÞ x 2 C1 � B

0 x 2 B n C1

� ð9Þ

where wj is the displacement field (total wavefield), si is the dis-
tributed load at C1, and Lij;Nij, and Tijk are the following differential
operators:

Lijð@Þ ¼ ðk0 þ l0Þ@i@j þ dijl0@k@k þ dijq0x
2 ð10Þ

Nijð@; xÞ ¼ ~kðxÞ þ ~lðxÞ
� �

@i@j þ dij ~lðxÞ@k@k þ @i
~kðxÞ

� �
@j

þ dij @k ~lðxÞð Þ@k þ @j ~lðxÞ
� �

@i þ dij ~qðxÞx2 ð11Þ

Tijkð@; xÞ ¼ lðxÞdik@j þ lðxÞdjk@i þ kðxÞdij@k ð12Þ

Note that dij is the Kronecker delta, @j is the partial differential oper-
ator, njðxÞ is the normal vector of the boundary at the point x, and
the subscript indicates the component of the coordinate system.
The Green’s function for the background structure of the wavefield
is important in the formulation, as well as in the numerical calcula-
tions; this function is defined as

Lijð@xÞGjkðx; yÞ ¼ �dikdðx� yÞ
njðxÞT ð0Þijk ð@xÞGklðx; yÞ ¼ 0; ðx 2 BÞ

ð13Þ

where x; y 2 R3
þ are the field and source points for the Green’s func-

tion, @x denotes the differential operator for the field point, dð�Þ is
the Dirac delta function, and Gijð�; �Þ is the Green’s function. Note

that Tð0Þijk is the differential operator defined by

Tð0Þijk ð@Þ ¼ l0dik@j þ l0djk@i þ k0dij@k ð14Þ

We will use the spectral form of the Green’s function (Touhei,
2009) for the numerical examples in this article; this is given byFig. 1. Wave problem considered in this article.
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