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a b s t r a c t

The affect of material porosity on propagation of shock waves in solids is examined in the context of finite
strain, associated plasticity, with porosity incorporated via the Gurson model and accounting for material
hardening. Setting is analogous to the fluid dynamics piston shock model so that deformation of the
semi-infinite medium is permitted only in the longitudinal direction. The steady response, which devel-
ops by imposing constant piston velocity in either tension or compression, is examined by sectors map-
ping of the characteristic velocity as determined by the constitutive model. It is shown that even the
slightest levels of initial porosity can have an appreciable effect on field response, inducing destructive
unsteady behavior accompanied by increased shock dissipation. Numerical illustration of limit velocities
at appearance of a plastic shock and at onset of that unsteady behavior are presented, showing that mate-
rial porosity delays initiation of plastic shock waves and promotes higher energy consumption which
may, in turn, enhance protective capabilities.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The role of material porosity in propagation of shock waves
under extreme loading conditions is investigated. A longitudinal
deformation field, analogous to the piston shock field in fluid
dynamics, is considered to facilitate investigation of steady shock
wave propagation in porous solids. The present work builds on a
previous study (Cohen and Durban, 2014) which has shown that
the specific geometry of longitudinal deformation has a profound
effect on the dynamic response. Considering the
three-dimensional geometry of the piston shock field, the analysis
therein shows that the dynamic response may consist of both an
elastic precursor and a plastic shock separated by a continuous
elastoplastic range. That behavior has been observed experimen-
tally (Marsh, 1980; Longy and Cagnoux, 1989; Davison and
Graham, 1979), however it is not fully captured by the more fre-
quently considered 1D and 2D geometries. Note that though the
geometric setting considered here is 3D, the deformation field
propagates only along the longitudinal direction, as will be detailed
in the next section.

Though available experimental and theoretical research on
shock processes in solids (Marsh, 1980) is sufficient to delineate
the fundamental behavior, some questions remain open. In the

context of protective structures, for example, it is not clear
whether shock waves are essentially destructive and should be
avoided to maintain structural integrity or, alternatively, have a
decelerating effect on the penetrator due to increased energy
absorption by dissipation, as the wave drag effect in fluid dynam-
ics. Which of these two contradicting phenomena dominates the
response depends on the penetration velocity and the material
properties. Incorporation of measured levels of material porosity
can influence the response substantially and facilitate design of
more efficient protective structures in the future.

The present study attempts at a benchmark problem to deter-
mine the role of porosity in the steady dynamic material response
by evaluation of dissipation effects and critical velocities for
appearance of a plastic shock wave. Therefore the analysis in
Cohen and Durban (2014) is extended to include material porosity
modeled by the generalized (Gurson, 1977) model. As a first step,
the longitudinal stress-stretch response of the porous solid, con-
strained in the transverse direction, is examined. Next, evaluation
of characteristic velocity and sectors mapping of the discontinuous
and continuous zones is conducted, leading to the complete field
response by applying jump conditions and continuous
self-similar solutions, respectively. Energy considerations then
result in a measure for the shock dissipation of the porous field,
at different levels of initial porosity, as compared with that of the
nonporous field.

A pioneering study on propagation of longitudinal, small
strain, dynamic deformation in elastoplastic solids dates back
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to von Karman and Duwez (1950). The longitudinal pattern con-
sidered therein was of a tensioned bar allowing changes in the
cross sectional area and with no transverse stress. A more recent
study, by Knowles (2002), considered the finite strain tension
response for a similar deformation pattern but with a
rubber-like material. In that study conditions for appearance of
shock waves and jump relations across the discontinuity were
formulated.

In the longitudinal deformation pattern considered here the
solid is constrained so that deformation in the transverse direction
is not permitted, implying that the transverse stresses are active.
Therefore, motion is purely uniaxial in a spatial setting. Despite
the difference in geometry, the formulation of the longitudinal
equation of motion and compatibility relations in the longitudinal
deformation patterns is similar to that in Knowles (2002), implying
an identical governing equation, obtained in the form of a nonlin-
ear longitudinal wave equation for arbitrary constitutive relations.
Thus resulting in conditions for appearance of shock waves and the
associated continuous and discontinuous solutions (von Karman
and Duwez, 1950; Knowles, 2002). Since the constitutive response
depends on the deformation pattern, fundamental differences
between the present field response and that in a different longitu-
dinal deformation pattern may appear as shown by a comparison
in Cohen and Durban (2014).

Fomin and Kiselev (1997) investigated the appearance of shock
waves in porous solids by numerical simulation of plate impact
tests. Therein, the porosity was incorporated via a modified
Gurson model. Appearance of shock waves in porous media is dis-
cussed in Davison and Graham (1979) for materials of very low
density. Drumheller (1998) considered the dynamic response of
saturated porous media. Studies on longitudinal shock waves in
nonporous media are reviewed in Cohen and Durban (2014) and
in Howell et al. (2012). It should be noted that the constitutive
response considered here applies for ductile materials with low
levels of initial porosity, as for example metals with pores as
imperfections and sintered metals.

The Gurson (1977) model employs averaging methods to
account for the effect of material porosity via a continuum
approach assuming homogenous distribution of void volume frac-
tion. Hence, the present constitutive model is not sufficient for
investigation of the response of granular media, materials with
high levels of the void volume fraction or rate-sensitive materials.
Additionally the present approach is purely mechanical employing
standard principals of the theory of plasticity and does not account
for thermo-mechanical coupling with the material response deter-
mined completely by the Gurson (1977) constitutive equation.
Therefore it does not employ an equation of state to analyze the
dynamic response, as does a substantial body of literature in the
field (Addessio and Johnson, 1993; McQueen et al., 1970; Brown
et al., 2007; Herrmann, 1969).

2. Problem formulation

An instructive pattern that reveals the fundamental nature of
shock processes in porous media is the steady-state longitudinal
deformation field. The face of a semi-infinite body is put to
motion at constant velocity and, while strain is permitted only
in the longitudinal direction, transverse stresses preserve unifor-
mity in the cross-sectional area. Constraints are analogous to
those of the elementary shock tube in gas dynamics, discussed
in Cohen and Durban (2014) and illustrated on Fig. 1. The
enforced end velocity ðVÞ is associated with constant applied
(dimensionless) stress ðrÞ which may be either tension ðV < 0Þ
or compression ðV > 0Þ. Throughout the formulation stresses
are nondimensional with respect to elastic modulus ðEÞ. Briefly

recapitulating the formulation in Cohen and Durban (2014), we
combine the compatibility equation with the equation of motion,
to find that the deformation field is governed by the nonlinear
wave equation

u;tt ¼ C2u;xx ð1Þ

where x is the Lagrangian coordinate, u is the longitudinal displace-
ment, t denotes time and C is the characteristic wave velocity.
Considering constitutive laws where r depends only on the stretch
a ¼ 1þ u;x, namely r ¼ rðaÞ, the characteristic velocity is a function
of the stretch, obeying the relation

C2 ¼ C2
Er
0 ð2Þ

where the superposed prime represents differentiation with respect
to stretch ðaÞ and CE ¼

ffiffiffiffiffiffiffiffiffiffiffi
E=qo

p
is the elastic wave speed in a long

rod, with qo denoting the initial macroscopic density. We limit
the discussion to stable material response with positive
stress-stretch slope ðr0 > 0Þ, thus preserving the hyperbolic nature
of the equation.

Steady solutions of the nonlinear wave Eq. (1), if exist, may be
either continuous or purely discontinuous with the possibility of
combination of both, depending on variation of characteristic
velocity with applied load, as reflected by the stress-stretch curve
slope according to (2). Conditions for appearances of discontinuity
are obtained by evaluation of the characteristic slopes (Courant
and Friedrichs, 1948)

in compression : r00 < 0
in tension : r00 > 0

ð3Þ

implying convexity/concavity of the stress-stretch curve in com-
pression/tension, respectively. A more recent derivation of the
shock condition, in a tensioned longitudinal bar can be found in
Knowles (2002). In that study changes in the cross-sectional area
of the bar are permitted while the bar is free of transverse load.
However, since motion is considered only in the longitudinal direc-
tion, formulation of (1)–(3) is analogous to that in Knowles (2002)
with differences imposed by the stress-stretch relation r ¼ rðaÞ,
which in the present analysis is derived assuming a
three-dimensional geometry.

If shock condition (3) holds and the field is purely discontinu-
ous, then segments with constant stretch and velocity are divided
by discontinuity. Thus, requiring conservation of mass and
momentum across the shock we write the jump conditions

sut ¼ 0 ð4Þ

ssvtþ C2
Esrt ¼ 0 ð5Þ

also known as the Hugoniot conditions, where s is the Lagrangian
shock wave velocity and v ¼ u;t is the material velocity. Note that
the double bracket notation implies the jump of the inserted quan-
tity across the discontinuity.

Fig. 1. The shock tube field with compressed porous media is schematically
illustrated, with the Lagrangian longitudinal coordinate ðxÞ, the longitudinal
displacement ðuÞ and the enforced piston velocity ðVÞ.
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