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a b s t r a c t

We study closed form solutions for the perfect bonding and the delamination case for a monolayer gra-
phene sheet resting on an elastic foundation. The theoretical framework we adopt is restricted to the
materially and geometrically linear case. Graphene is modeled as a hexagonal 2-lattice, while the sub-
strate is assumed to behave in an isotropic linearly elastic manner. Initially, we ignore out-of-surface
motions and study the case of biaxial tension/compression and simple shear. We find the components
of the shift vector by solving the equations ruling the shift vector. We then substitute this expression
for the shift vector components to the momentum equation. This way we obtain conditions that the field
of the internal strains, the strain constants and the material parameters should satisfy in order biaxial
tension/compression and simple shear to be solutions for all equilibrium equations. For the particular
case of axial strain and for the simple shear case we plot the mean stress components versus strain for
three different substrates. Then, we take into account out-of-surface motions. We assume the
out-of-surface displacement to be the product of a wave-like function and an unknown function, which
we determine under certain conditions. These conditions are constraints that the field of the internal
strains, the strain constant and the material characteristics of the substrate and graphene should satisfy
in order the equilibrium equations to be satisfied. These cases pertain to the perfect bonding case.
Distinguishing film’s displacement from the bulk (substrate) displacement we study the case where
delamination occur. We again use a semi-inverse method: we assume film’s displacement to be the pro-
duct of a wave-like function with an unknown function. The bulk’s displacement is assumed to be differ-
ent from the one of the film, in areas of delamination. We determine the unknown function present in the
displacement of the film, by requiring the momentum equations to be satisfied.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Graphene is a two-dimensional sheet that constitutes the build-
ing unit of all graphitic forms of matter, such as graphite, carbon
nanotubes and carbon fibers. Graphene attract much attention to
the mechanics community due to its very high strength of approx-
imately 1 TPa (Lee et al., 2008). This together with its very small
thickness, of approximately 0.335 nm, makes graphene an ideal
potential candidate for strengthening composite structures. In a
recent article we review the mechanical properties of graphene
as probed by spectroscopic measurements and as calculated by
ab initio, molecular simulation and continuum mechanical meth-
ods (Galiotis et al., in press).

On the other hand, graphene’s very small thickness has some
unpleasant consequences when trying to subject it to experiments:
it is very difficult to grab graphene and apply some kind of loading.
To remedy this situation workers embed graphene samples on a
polymer substrate and load the system graphene/substrate. Then
the technique of Raman spectroscopy can be applied to measure
the mechanical properties of graphene by measuring the G and
2D peak of the Raman spectra. In Androulidakis et al. (2014) we
embed a graphene flake on a substrate and apply a tensional load-
ing to the system graphene/substrate using either the technique of
cantilever beam or the four point bending technique.

The present work is motivated from the above described use of
the substrate. It targets to mathematically model the graphene/-
substrate system when subjected to simple loadings. In a sense,
this is a continuation of our previous efforts to model
free-standing graphene (Sfyris and Galiotis, in press; Sfyris et al.,
2014a,b; Sfyris et al., 2015), by taking into account substrate’s
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presence. In Sfyris and Galiotis (in press), Sfyris et al. (2014a,b) and
Sfyris et al. (2015) we present the mathematical background for
modeling graphene at the continuum level. In particular, adopting
the framework of Steigmann and Ogden (1999) we utilize a surface
free energy for graphene based on three arguments. The first argu-
ment is an in-surface stain measure describing changes taking
place on the surface. The second argument is the curvature tensor
which describe the out-of-surface motion and introduce bending
into the model. The third argument is the shift vector. The motiva-
tion for assuming the shift vector as an argument stem from well
established theories of crystalline materials (Parry, 1978;
Ericksen, 1970; Ericksen, 1979; Fadda and Zanzotto, 2000; Fadda
and Zanzotto, 2001; Pitteri, 1984; Pitteri, 1985; Pitteri and
Zanzotto, 2003).

In this sense we stress that graphene is modeled as a hexagonal
2-lattice (Sfyris and Galiotis, in press; Sfyris et al., 2014a,b).The
need for viewing graphene as a multilattice stem from the fact that
graphene’s lattice cannot be seen as a Bravais simple lattice. In
standard terminology of applied crystallography (Fadda and
Zanzotto, 2000; Fadda and Zanzotto, 2001; Pitteri, 1985), gra-
phene’s lattice belong to a special category of multilattices: it is a
hexagonal 2-lattice. The unit cell for all possible plane 2-lattices
is given in Fadda and Zanzotto (2000). The fact that graphene is
at the discrete level a 2-lattice has some important consequences
when scaling up to the continuum. The most important conse-
quence is that the shift vector should be an independent argument
at the continuum energy (Parry, 1978; Ericksen, 1970, 1979; Fadda
and Zanzotto, 2000, 2001; Pitteri, 1984, 1985; Pitteri and Zanzotto,
2003). The shift vector is the vector connecting the two simple
hexagonal lattices that constitute the hexagonal 2-lattice of gra-
phene (see also the Figures in Sfyris and Galiotis, in press; Sfyris
et al., 2014a,b; Sfyris et al., 2015). So, at the continuum level the
energy should depend on the shift vector as well.

Lamdmark works on the continuum modeling of graphene stem
from the fundamental work of Lee et al. (2008) who use a
nanoidentation experiment in an atomic force microscope to mea-
sure the elastic properties and intrinsic strength of graphene. Using
second order elasticity these authors evaluate Young’s modulus,
the second order elastic constant as well as graphene’s breaking
strength. Their analysis model graphene as an isotropic body in
one dimension, due to symmetry in the loading. Generalization
of their approach to two dimensions is done by Cadelano et al.
(2009). These authors view graphene as an isotropic body and they
utilize an energy cubic in strains (second order elasticity in words
of Murnaghan (1951) and Rivlin (1963)). Utilizing tight-binding
atomistic simulations they calculate Young’s modulus, Poisson
ratio as well as higher order constants for graphene. While inter-
esting and novel their approach is, it lacks the treatment of bend-
ing effects. It also model graphene as an isotropic body;
dependence on the zigzag and the armchair direction is not incor-
porated to the constitutive law through dependence on a structural
tensor. Fifth order models for graphene are presented by Wei et al.
(2009). These authors utilize an energy that depends on strains of
the fifth order. Using density functional theory for simple loading
histories they evaluate higher order constants for graphene. Their
approach does not include bending effects neither anisotropy; gra-
phene is modeled as an isotropic body.

Compared to these fundamental and interesting works, our line
of work for modeling graphene as a 2-lattice (Sfyris and Galiotis, in
press; Sfyris et al., 2014a,b; Sfyris et al., 2015) add novelty in three
levels: a. we include bending effects into our analysis by depen-
dence of the energy on the curvature tensor, b. symmetries of gra-
phene are properly taken into account starting from the discrete
picture and passing consistently to the continuum using the struc-
tural tensor in line with the classical theories of invariants of non-
linear elasticity, c. our analysis is devoid of the endless Taylor

expansion of the energy the abovementioned works utilize: evalu-
ating the invariants we find the exact number of material parame-
ters for a most generic energy describing the material at hand. To
all these we add that graphene is a monoatomic 2-lattice and not
a simple lattice that almost all works in literature assume. Thus,
at the continuum energy the shift vector should be taken into
account in line with well established theories of multilattices
(see e.g. Chapter 11 of Pitteri and Zanzotto (2003)).

In the literature there are many works related with thin film/-
substrate interactions, from the theoretical point of view. We refer
to the paper by Mishnaevsky and Gross (2005) for a concise review
of this topic as well as to its numerous references. We draw partic-
ular attention to the fundamental paper by Huang (2005). There,
the substrate behave viscoelastically while for the thin film the
von-Karman assumptions are adopted. Using plane strain analysis
and the standard Laplace transformation method for converting a
viscoelastic problem to an elastic one, the author solve the vis-
coelastic problem of the substrate. The effect of the thin film is pre-
sent on the boundary condition of the equations governing the
bulk material.

Another interesting study is the approach of Cao and Hutchinson
(2012) who adopt a neo-Hookean expression for the energy of the
film as well as for the substrate in order to study the effect of the
pre-stretch of the substrate. Fried and Todres (2005), study the
effect of curvature and residual stress to the buckling of a half space
with free surface near a contactor. They assume that the bulk and
the boundary body are made of the same material and use the geo-
metrical symmetry to reduce the problem to one dimension only. It
is important to note that these authors introduce van der Waals
effects in their analysis. The effect of the surface tension of a free
surface on the bulk material is studied by Wang et al. (2010) who
also assume that the free surface and the bulk body are made of
the same material. The case of partial delamination of the thin film
from the substrate is an undesirable phenomenon which appears
frequently in the manufacturing process. Bedrossian and Kohn
(2015) lay down a specific expression for the displacement function
that describe partial delamination in the form of a blister.

The main novelty of the present contribution lies on the fact
that we take into account the presence of the substrate on closed
form solutions related with simple loadings. This is done for the
case where graphene and substrate are perfectly bonded and also
for the case where delamination take place. Additionally, we retain
throughout the analysis terms related with residual strains for
both the thin film and the substrate. We adopt the field equations
as reported by Chhapadia et al. (2011). These are the momentum
and the moment of momentum equations for the thin film (gra-
phene) in the absence of body forces and inertia. The effect of
the substrate enter through terms present in these equations. To
these equations one should add the equation ruling the shift vector
(Parry, 1978; Ericksen, 1970, 1979; Fadda and Zanzotto, 2000,
2001; Pitteri, 1984, 1985; Pitteri and Zanzotto, 2003) since gra-
phene is a multilattices.

To bring our framework closer to more applied approaches and
to give a rough order of magnitude for plotting purposes, we pre-
sent the mean stress–strain diagrams for the axial tension test
and the simple shear problem. For the substrate we make three dif-
ferent assumptions corresponding to three common materials used
as substrate: Polyethylene terephthalate (PET), Polymethyl
methacrylate (PMMA) and Polydimethylsiloxane (PDMS). In the
mathematical model these are introduced through their Lame con-
stants, k; l. Being aware that these polymeric substrate’s behave
in a viscoelastic manner, we assume the viscous response to be
negligible, since we have in mind experiments with slow rate such
as those in Androulidakis et al. (2014).

For graphene we adopt the linear framework of Sfyris et al.
(2014b), so the whole theory is confined to geometrical and
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