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a b s t r a c t

This paper presents a semi-analytical approach to solve the three-dimensional acoustic scattering prob-
lems with multiple spheres subjected to a plane sound wave. To satisfy the three-dimensional Helmholtz
equation in a spherical coordinate system, the multipole expansion for the scattered acoustic field is for-
mulated in terms of the associated Legendre functions and the spherical Hankel functions that also satisfy
the radiation condition at infinity. The multipole method, the directional derivative and the collocation
technique are combined to propose a collocation multipole method in which the acoustic field and its
normal derivative with respect to the non-local spherical coordinate system can be calculated without
any truncated error, frequently occurred when using the addition theorem. The boundary conditions
are satisfied by collocating points on the surface of each sphere. By truncating the higher order terms
of the multipole expansion, a finite linear algebraic system is acquired. The scattered field can then be
determined according to the given incident sound wave. The convergence analysis considering the speci-
fied error, the separation of spheres and the wave number of an incident wave is first carried out to pro-
vide guide lines for the proposed method. Then the proposed results for acoustic scattering by one, two
and three spheres are validated by using the available analytical method and numerical methods such as
boundary element method. Finally, the effects of the separation between scatterers, the incident wave
number and the incident angle on the acoustic scattering are investigated extensively.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The subject of acoustic scattering has long attracted the atten-
tion of researchers in academia or industry because the results of
corresponding studies can be found in many applications (Ingard,
2008) such as locating sound sources, noise control, etc. Although
numerical methods such as finite element methods (FEM) and
boundary element methods (BEM) (Wu, 2000) can solve these
problems, analytical solutions, if available, usually result in accu-
rate and fast-rate convergence methodologies and provide physical
insight into the problem under consideration. Furthermore, its
results can also provide benchmark solutions that are useful for
evaluating the accuracy of various numerical methods.
Consequently, a semi-analytical approach to the problem of a plane
sound wave scattered by multiple spheres is presented in this
work.

During the past few decades, exterior acoustic problems with
simple scatterers have been solved by various analytical methods
(Bowman et al., 1987; Twersky, 1964; Marnevskaya, 1969, 1970;
Gumerov and Duraiswami 2002) or semi-analytical methods (or

approximation methods) (Waterman 1969; Peterson and Strom
1974) including the null-field boundary integral equation method
(BIEM) (Chen et al., 2010). Rayleigh was the first to obtain and
apply the general solutions for scattering of sound by a sphere
(Twersky 1964). The Bessel–Legendre series solution was derived
to analytically investigate the case of moderately small ka.
Marnevskaya (1969, 1970) derived the formulation for the prob-
lem of diffraction of a plane sound wave by two spheres using
the Bessel-Legendre series expansion and the addition theorem
for spherical wave functions. Graphs of the far-field scattering
intensity versus the spherical angle were presented for the cases
where the distance between two spheres is much greater than
the wavelength; however, the accuracy of some results is insuffi-
cient after careful comparisons. Gumerov and Duraiswami (2002)
used the addition theorem of spherical functions to present the
multipole reexpansion to solve the problem of multiple scattering
from N spheres arbitrary located in three-dimensional space.
Waterman (1969) presented a semi-analytical approach, the so
called transition (or T-) matrix method, for acoustic scattering
problem. Peterson and Strom (1974) extended the T-matrix
approach to solve the problem with arbitrary number of scatterers.
Chen et al. (2010) applied the null-field BIEM to solve radiation and
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scattering problems with multiple spheres. It is well known that
the BIEM belongs to the boundary-type method, reducing the
dimension of the original problem by the order of one.
Consequently the number of the unknowns is much less than that
for the domain type methods such as the FEM so that the domain
mesh generation, a difficult and time consuming task, can be
avoided. However, in addition to the boundary integration
required in the BIEM, the BIEM has the problem of singularity
and fictitious eigenvalue. Although many remedies were suggested
to solve these problems, including the degenerate kernel (Chen
et al., 2010) and various algorithms (Chen et al., 2001) to suppress
the fictitious eigenvalue, the additional techniques inevitably lead
to complicated calculations as well as tedious formulations, limit-
ing their practical applications. Therefore, developing a method
with regular characteristics, free of fictitious eigenvalue, is needed.

The multipole method for solving multiply-connected domain
problems was firstly proposed by Zaviska (1913) and used for the
interaction of waves with arrays of circular cylinders by Linton
and Evans (1990), the multipole expansion being the so called
the wave function expansion. The addition theorem is often
employed to transform the multipole expansion into one of the
local coordinate systems to satisfy the specified boundary condi-
tions. For the circular boundary, some applications can be seen in
the flexural wave scattering (Lee and Chen, 2010). In the case of
the sphere, much research can be seen in the literature
(Marnevskaya, 1969, 1970; Peterson and Strom, 1974; Gumerov
and Duraiswami, 2002). Gumerov and Duraiswami (2005) used
the fast multipole method to efficiently solve the large multiple
scattering problems. From a mathematical perspective, this proce-
dure is elegant. However, we need to face a difficult formulation
due to the infinite series form of the addition theorem, for example
spherical wave functions for spheres, limiting its applications.

This paper presents a collocation multipole approach to semi-
analytically solve the acoustic scattering problems with multiple
spheres. Instead of using the addition theorem, when considering
the Neumann boundary conditions (or sound-hard conditions),
the normal derivatives of an acoustic pressure with respect to a
non-local spherical coordinate system can be exactly calculated
by using the directional derivative in each local spherical coordi-
nate system. The given boundary conditions can be satisfied by dis-
tributing collocation points on the surface of each sphere. A
coupled finite linear algebraic system is derived by truncating
the infinite multipole expansion. According to the given incident
acoustic wave, the scattering field is obtained through the solution
of the algebraic system. Once the total field is calculated as the sum
of the incident field and the scattered field, the near-field pressure
intensity on the surfaces of scatterers and the far-field scattering
pattern can be both determined. The convergence analysis is car-
ried out first to determine the proper number of terms in the mul-
tipole expansion for various situations. Then the proposed results
are verified by the available analytical method and the numerical
methods such as the BEM. Finally the effects of the distance
between spheres and the incident wave on the near-field and
far-field of behavior of acoustic scattering are investigated exten-
sively. It is worth mentioning that the proposed method is applic-
able to electromagnetic scattering (Wang and Chew, 1993) or
scattering of water wave (Wu, 1995) without any substantial
change as spheres are of interest in fields such as electromagnetics
and hydrodynamics.

2. Problem statement and the general solution in the spherical
coordinate system

To properly deal with the geometry considered in this work, the
spherical coordinate system shown in Fig. 1 should be used. The

spherical coordinates are related the Cartesian coordinates by the
relation

x ¼ rsinhcos/; y ¼ rsinhsin/ and z ¼ rcosh ð1Þ

or

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
; h ¼ cos�1 z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p� �
and

/ ¼ atan2ðy=xÞ; ð2Þ

where r P 0 is the distance between a field point and the origin,
0 6 h 6 p and 0 6 / < 2p.

An unbounded acoustic medium containing Ns spheres sub-
jected to an incident plane sound wave is shown in Fig. 2, where
Ns + 1 observer coordinate systems are used: Oxyz is a global
Cartesian coordinate system and Ojrjhj/j, j = 1, . . . ,Ns, is the jth local
spherical coordinate system, attached to one of the Ns spheres. The
position of each of the origins Oj with respect to global Cartesian
coordinate system Oxyz is given by ðx j; y j; z jÞ. The wave equation
for the acoustic pressure Pðr; tÞ in an unbounded homogenous
medium is

r2Pðr; tÞ � @
2Pðr; tÞ
c
�

2@t2 ¼ 0; r 2 Xe; ð3Þ

where r2 is the Laplace operator, c
�

is the speed of sound and

r ¼ ðx; y; zÞ is the position of a typical field point in the unbounded
exterior region denoted by Xe.

For the time-harmonic motion exclusively, solution of Eq. (3) is
given by

Pðr; tÞ ¼ pðrÞe�ixt; ð4Þ

where x is the circular frequency. Hence the complex-valued func-
tion p(r) satisfies the following Helmholtz equation,

ðr2 þ k2ÞpðrÞ ¼ 0; r 2 Xe; ð5Þ

where k ¼ x= c
�

is the wave number.

In spherical coordinates, the Helmholtz equation has separated
solutions of the form

jnðkrÞPm
n ðlÞeim/; ynðkrÞPm

n ðlÞeim/; hð1Þn ðkrÞPm
n ðlÞeim/ and

hð2Þn ðkrÞPm
n ðlÞeim/;

where the jn and yn are called spherical Bessel functions of the first
and second kinds, l ¼ cosh and Pm

n is the associated Legendre func-
tions of degree n and order m. Analogous to the Hankel function, the
spherical Hankel function of the first and second kinds are defined
by

hð1Þn ðkrÞ ¼ jnðkrÞ þ iynðkrÞ and hð2Þn ðkrÞ ¼ jnðkrÞ � iynðkrÞ: ð6Þ

Since the functional value of the spherical Bessel function of yn

is infinite at the origin, the permissible solution of Eq. (5) is
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Fig. 1. Spherical coordinate system.
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