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a b s t r a c t

The prediction of strength properties of engineering materials, which in general are time dependent due
to chemical and deterioration processes, plays an important role during manufacturing and construction
as well as with regard to durability aspects of materials and structures. On the one hand, the speed of
production processes and the quality of products may be significantly increased by improved material
performance at early ages. On the other hand, the life time of materials and structures can be enlarged
and means of repair and maintenance can be optimized.

For determination of strength properties of materials, an extension of the discontinuity layout
optimization (DLO) towards an iterative adaptation of the underlying mode of discretization (nodes
and discontinuities) is proposed in this paper. This technique yields an improved representation of the
underlying failure mechanism (thus, avoiding interlocking in consequence of the chosen discontinuity
layout) at reduced computational costs. The performance of the proposed DLO method is assessed by
the re-analysis of problems with available analytical solution and finally applied to upscaling of strength
properties considering, in a first step, two-phase material systems representing matrix–inclusion
morphologies.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Within the framework of multiscale modeling, effective mate-
rial properties are determined by means of upscaling information
from finer scales of observation towards the macroscale. For this
purpose, depending on the considered type of material behavior,
analytical and/or numerical techniques were proposed in the open
literature. E.g. as regards upscaling of stiffness properties, contin-
uum micromechanics is commonly employed with applications
to e.g. cement-based materials (Bernard et al., 2003; Pichler
et al., 2008), bone (Hellmich et al., 2003), hydroxyapatite bio-
materials (Fritsch et al., 2010), wood (Hofstetter et al., 2005;
Stürzenbecher et al., 2010), and woven composite fabrics (Chung
and Tamma, 1999). More recently, continuum micromechanics
was extended towards upscaling of viscoelastic material behavior
(Aigner et al., 2009; Pichler and Lackner, 2009; Pichler et al.,
2011; Lackner et al., 2006), transport properties (Eitelberger and
Hofstetter, 2011; Eitelberger and Hofstetter, 2011), shrinkage

deformation (Pichler et al., 2007), and heat transfer in heteroge-
neous solids (Özdemir et al., 2008). As regards upscaling of
strength properties, continuum micromechanics was applied to
concrete (Pichler et al., 2008) and hydroxyapatite biomaterials
(Fritsch et al., 2007, 2010). In contrast to analytical methods,
numerical methods allow for the solution of complex problems,
considering distribution and shape of inclusions as well as complex
behavior of the material phases. E.g. the finite element method was
successfully applied in Mercatori and Massart (2011) for deter-
mination of strength properties of masonry. Limit analysis, on
the other hand, was employed for predicting strength properties
of cohesive–frictional materials (Ganneau et al., 2006) and upscal-
ing of strength properties of porous (Cariou et al., 2008) and two-
phase materials (Füssl et al., 2008; Lackner et al., 2006). Hereby,
two different approaches of numerical limit analysis were devel-
oped on the one hand, the considered domain is divided into ele-
ments (Sloan, 1988; Sloan, 1989; Lyamin and Sloan, 2002; Bonet
et al., 2008), employing nodes and finite elements for the spatial
description of the material system under consideration offering
the possibility to represent the microstructure of heterogeneous
materials in an appropriate manner. Problems associated with
the use of the FEM such as the dependency of the results on the
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underlying discretization and unsatisfactory modeling of the inter-
face behavior between inclusions and the matrix material were
reported in Wriggers and Moftah (2006). On the other hand, the
approach proposed in Smith and Gilbert (2007, 2008) is exclusively
based on discontinuities building up the potential failure mecha-
nism. As regards the latter, no spatial discretization is required.
In this work, the aforementioned discontinuity-based approach
present in Smith and Gilbert (2007, 2008) for numerical limit
analysis considering discontinuity layout optimization (DLO)
(Smith and Gilbert, 2007) is combined with adaptive schemes suc-
cessfully developed in recent years e.g. for the finite-element
method, aiming at a numerically efficient and robust method for
application of limit analysis to complex material systems.

This paper is organized as follows: The underlying formulation
of the methodology of the DLO is reviewed and its extension
towards adaptive techniques are presented in the following sec-
tion. In Section 3, the performance of the proposed adaptive DLO
(ADLO) method is assessed by the re-analysis of problems with
available analytical solution. Finally, ADLO is applied for the deter-
mination of strength properties of matrix–inclusion materials. The
obtained results are compared with analytical and/or numerical
solutions of benchmark problems, leading to concluding remarks
given in Section 4.

2. Methodology

DLO is a limit-analysis methodology for the determination of
the collapse load of structures. Recently, this method was applied
to geotechnical-engineering problems (Smith and Gilbert, 2007,
2011), and masonry structures (Gilbert et al., 2010). Within the
domain of the considered structure, DLO requires the generation
of n nodes which are connected by m discontinuities, of which
every one may be a potential failure discontinuity and, thus, con-
tribute to the failure mode. Discontinuities are geometrically gen-
erated by connecting nodes. By assigning material properties to
every discontinuity (Mohr–Coulomb-type material) and defining
boundary conditions, the discontinuities contributing to the failure
mechanism are determined aiming at minimization of the internal
energy. This leads to an upper-bound (UB) formulation with the
following linear programming (LP) problem (for details, see
Smith and Gilbert (2007)):

min kfT
L d ¼ �fT

Ddþ gT p;

subject to

Bd ¼ 0;

fT
L d ¼ 1;

Np� d ¼ 0;
p P 0;

ð1Þ

where fL [N] and fD [N] are (2m) vectors containing the shear and
normal component for live and dead load, respectively, and k is
the failure load factor, g [N] is the (2m) vector containing the pro-
duct of length ‘ [m] and cohesive shear strength c [N/m] of the dis-
continuities, B [-] is a (2n � 2m) compatibility matrix, and N [-] is a
(2m � 2m) plastic-flow matrix. In Eq. (1), d and p represent the
unknowns of the LP problem, where d [m] is a (2m) vector of dis-
continuity displacements, and p [m] is a (2m) vector of plastic mul-
tipliers. In Fig. 1, discontinuity i is shown, connecting Nodes A and B
(Smith and Gilbert, 2007). The assembly of the corresponding com-
patibility matrix Bi for the following example is given in the
Appendix A. The compatibility requires that the shear and normal
displacement of all discontinuities connected to node j sum to zero,
yielding Bd ¼ 0 as given in Eq. (1). Fig. 2 contains the shear and nor-
mal displacements of discontinuities contributing to the failure

mode of the considered example subjected to compressive loading.
Hereby, the bottom boundary was fixed with a force acting at the
top boundary and free boundaries on the side were chosen. For dis-
continuities located on unconstrained boundaries (top and side
boundaries) si and ni are considered as independent variables. For
the other discontinuities, the normal displacement ni is related to
the shear displacement si according to the Mohr–Coulomb failure
criteria, reading for the case of an associated flow rule
ni ¼ si tan /i, where /i represents the angle of friction. Introducing
the plastic multipliers pþi and p�i for the ith discontinuity, the shear
displacement is either in or opposite to the positive shear direction
indicated in Fig. 1, giving for the shear displacement in the positive

Fig. 1. Discontinuity i connecting Nodes A and B (notation according to Smith and
Gilbert (2007)).

Fig. 2. Failure mode of DLO: Thick lines indicate discontinuities contributing to the
failure mode.

Fig. 3. Illustration of the two possible modes of displacement of discontinuity i: (a)
positive shear and dilation and (c) negative shear and dilation.
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