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a b s t r a c t

In this paper we consider theoretically the finite deformation of a circular cylindrical tube of a trans-
versely isotropic elastic material, specifically the combined axial stretch, inflation and helical shear defor-
mation, with particular reference to the failure of ellipticity. For a simple form of strain-energy function
specific examples involving axial and radial directions of transverse isotropy are then considered, leading
to different predictions of the onset of ellipticity failure.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The aim of this work is to analyze the equilibrium config-
urations of a tube of transversely isotropic hyperelastic material
subject to combined axial compression (or extension), inflation
and helical shear deformations for which the governing differential
equation varies in type locally from strongly elliptic to non-elliptic,
or vice versa, as the deformation proceeds. This change is associ-
ated with the possible emergence of surfaces of weak discontinuity
in the deformation, i.e. surfaces on which certain second deriva-
tives of the deformation are discontinuous, sometimes referred to
as weak solutions, or strong discontinuity where first derivatives
of the deformation are discontinuous. For definiteness in this paper
we shall use the terminology ‘weak solutions’ in referring to the
discontinuities.

This analysis has been motivated by instability phenomena in
fibre-reinforced composite materials. In particular, the material
under consideration is an isotropic neo-Hookean base (or matrix)
material augmented by an energy function that accounts for the
existence of fibre reinforcement, and in this work we will deal in
particular with the so-called standard model of reinforcement.
The loss of ellipticity of the governing differential equations for
the considered material is interpreted in terms of fibre failure.

The helical shear problem has been studied by many authors
from several points of view in the case of an isotropic material,
starting from the pioneering work of Rivlin (1949). These include
the study of combined axial and azimuthal shear of a circular

cylindrical tube of incompressible isotropic elastic material by
Ogden et al. (1973), in which some universal relations between
the stress components were provided, and the works of Beatty
and Jiang (1999) and Kirkinis and Ogden (2003), which were con-
cerned with compressible materials capable of supporting helical
shear. Horgan and Saccomandi (2003) investigated different con-
stitutive models that account for hardening at large deformations
in the case of a circular cylindrical tube composed of an incom-
pressible hyperelastic material. None of these papers were con-
cerned with the loss of ellipticity, but, by contrast, Fosdick and
MacSithigh (1983) provided a detailed study of helical shear with
emphasis on the structure of the energy function and its convexity,
with particular reference to a non-convex energy function and the
emergence of equilibrium configurations with discontinuous
deformation gradients.

In the case of an anisotropic material the problem of helical
shear has barely been studied, although Jiang and Beatty (2001)
derived a necessary and sufficient condition for the strain-energy
function to admit helical shear deformations for a compressible,
anisotropic hyperelastic circular tube, considering transverse iso-
tropy as a special case. Again, loss of ellipticity was not considered.
In terms of loss of ellipticity, Abeyaratne (1981) investigated the
emergence of solutions involving discontinuous deformation gra-
dients associated with loss of ellipticity in the finite twisting of
an incompressible isotropic elastic tube, while more recently
Kassianidis et al. (2008) and Gao and Ogden (2008), from different
perspectives, have analyzed the problem of azimuthal shear of a
circular cylindrical tube of incompressible transversely isotropic
elastic material where loss of strong ellipticity and the emergence
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of discontinuous (or non-smooth) solutions was examined.
Dorfmann et al. (2010) similarly studied the azimuthal shear prob-
lem, but with the anisotropy associated with two symmetrically
disposed preferred material directions. The problem of a tube of
transversely isotropic elastic material subject to radial and axial
deformations coupled with torsion was examined recently by El
Hamdaoui et al. (2014) but without reference to loss of ellipticity.

The discussion above relates to deformations of a thick-walled
tube. For azimuthal shear, in particular, which is a plane strain
deformation, the emergence, development and disappearance of
weak surfaces is a feature of the analysis in Kassianidis et al.
(2008), Gao and Ogden (2008) and Dorfmann et al. (2010). This is
also the case for the three-dimensional helical shear problem
which is analyzed herein.

Similar phenomena also arise for the problem of rectilinear
shear, which has been studied by Merodio et al. (2007), Destrade
et al. (2009) and Baek and Pence (2010). In particular, Merodio
et al. (2007) examined the existence of discontinuous solutions
associated with fibre kinking for different fibre orientations for
the (non-homogeneous) rectilinear shear of a finite thickness slab
of transversely isotropic elastic material between two rigid plates.
For the standard reinforcing model they obtained a closed-form
expression for the amount of shear as a function of the through-
thickness coordinate and they showed that fibres were subject to
contraction on both sides of a singularity (a kink surface).

Destrade et al. (2009) studied the same problem but with two
distinct families of fibres with the shear direction bisecting the
directions of the two fibre families. They showed that if the two fibre
families have the same mechanical properties then no singularities
can arise, but that singularities can develop when one fibre family is
significantly stiffer than the other. The paper by Baek and Pence
(2010) is concerned with a transversely isotropic material based
on the standard reinforcing model, first under simple shear (homo-
geneous) and then subject to rectilinear shear (inhomogeneous). For
simple shear they analyzed in detail the effect of fibre orientation on
the emergence, development and disappearance of singular sur-
faces (kink surfaces) as the shear stress is applied. They went on
to extend their analysis to the rectilinear shear problem and found,
in particular, that pairs of singular surfaces were nucleated at a criti-
cal value of the shear stress and then annihilated at a second critical
value, this being associated with a non-monotonic shear stress
amount of shear response.

In Section 2 we provide a summary of the basic ingredients of
the kinematics and nonlinear elasticity theory, with particular
reference to transversely isotropic materials and the loss of ellip-
ticity condition. This is then applied, in Section 3, to a reduced form
of the transversely isotropic constitutive law involving one isotro-
pic and one transversely isotropic invariant with two examples of
fibre distributions – axial and radial – and it is shown how the
emergence or disappearance of singular surfaces depends on the
geometrical parameters, the deformation and the strength of the
anisotropy. Finally, in Section 4 some concluding remarks are
made.

2. Problem formulation

2.1. Kinematics and constitutive laws

We consider a circular cylindrical tube with an undeformed and
stress-free reference configuration defined by

A 6 R 6 B; 0 6 H 6 2p; 0 6 Z 6 L; ð1Þ

where ðR;H; ZÞ are cylindrical polar coordinates with associated
unit basis vectors ðER; EH; EZÞ. The position vector, denoted X, of
a material point in this configuration is given by X ¼ RER þ ZEZ

relative to an origin on the tube axis. The deformation of the cylin-
der is described by the equations

r ¼ rðRÞ; h ¼ Hþ gðRÞ; z ¼ kzZ þwðRÞ; ð2Þ

where ðr; h; zÞ are cylindrical coordinates with unit basis vectors
ðer ; eh; ezÞ and X becomes x ¼ rer þ zez (with the same origin).
The constant kz is the axial stretch of the cylinder, and gðRÞ and
wðRÞ are unknown azimuthal and axial displacement functions to
be determined from the solution of the equilibrium equations and
boundary conditions.

The deformation gradient tensor is denoted F and given by
Grad x, where Grad is the gradient operator with respect to X. We
assume that the material is incompressible, so that the constraint

det F ¼ 1 ð3Þ

is satisfied. For the considered deformation F is given by

F ¼ @x
@R
� ER þ

1
R
@x
@H
� EH þ

@x
@Z
� EZ ð4Þ

and is calculated explicitly as

F ¼ ðkrer þ ch eh þ cz ezÞ � ER þ kheh � EH þ kzez � EZ ; ð5Þ

where kr ¼ r0ðRÞ is the radial stretch, kh ¼ r=R is the azimuthal
stretch, ch ¼ rg0ðRÞ and cz ¼ w0ðRÞ, the prime indicating differentia-
tion with respect to R. Then, by incompressibility,

kr ¼ ðkzkhÞ�1 ð6Þ

and

r2 ¼ a2 þ k�1
z ðR

2 � A2Þ; ð7Þ

where a ¼ rðAÞ is the deformed inner radius of the tube, and we
adopt the notation b ¼ rðBÞ for the outer deformed radius.

The right Cauchy–Green deformation tensor C ¼ FTF is given by

C ¼ ðc2
z þ c2

h þ k2
r ÞER � ER þ k2

h EH � EH þ k2
z EZ � EZ

þ chkh ðER � EH þ EH � ERÞ þ czkz ðER � EZ þ EZ � ERÞ ð8Þ

and the left Cauchy–Green deformation tensor FFT by

B ¼ k2
r er � er þ ðc2

h þ k2
h Þeh � eh þ ðk2

z þ c2
z Þez � ez þ chkr ðer

� eh þ eh � erÞ þ czkr ðer � ez þ ez � erÞ þ chcz ðeh � ez

þ ez � ehÞ: ð9Þ

We consider an incompressible elastic material with strain-en-
ergy function WðFÞ per unit volume, and by objectivity it depends
on F only through C. The nominal and Cauchy stress tensors S and
r are given by

S ¼ @W
@F
� pF�1; r ¼ F

@W
@F
� pI; ð10Þ

where p is a Lagrange multiplier associated with the incompress-
ibility constraint and I is the identity tensor.

In this paper we are concerned with a transversely isotropic
material with the direction of transverse isotropy denoted by the
unit vector A in the reference configuration. This can be thought
of an isotropic matrix material reinforced by a single family of
fibres (with A the local fibre direction), although this is not essen-
tial. For such a material W can be expressed in terms of four invari-
ants in the incompressible case, and in standard notation these are
typically taken to be

I1 ¼ trC; I2 ¼
1
2
½I2

1 � trðC2Þ�; I4 ¼ A � ðCAÞ; I5 ¼ A � ðC2AÞ; ð11Þ

where (by incompressibility) I3 � det C ¼ 1 has been omitted. In
general, A depends on position X. With W ¼WðI1; I2; I4; I5Þ the
Cauchy stress (10)2 expands out in the standard general form
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