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a b s t r a c t

Arches and beams buckled upward are analyzed. The structure is pushed downward from above at a
specific location along the span until snap-through occurs and the structure jumps to an inverted equi-
librium shape. Each beam or arch is modeled as an inextensible elastica. Critical displacements are com-
puted for buckled beams with both ends pinned, both ends clamped, or one end clamped and the other
end pinned. Circular arches with pinned ends are also investigated. The ends are immovable. The critical
displacement is obtained directly from a theoretical equilibrium shape of the initial unloaded structure.
Numerical results are presented for four height-to-span ratios of the initial structure, showing the critical
displacement for any application point along the span. At the onset of snap-through, the imposed dis-
placement is at or below the horizontal chord connecting the ends.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Snap-through of arches and buckled beams that are pushed
downward at a point along the span is investigated. The structure
is free to move downward at that point, but not upward, which is
unilateral (one-way) displacement control. After being pushed a
certain distance, the structures considered here snap downward
to an inverted configuration. For various height-to-span ratios of
the initial structure, the critical displacement is plotted as a func-
tion of the push-down location.

Snap-through caused by force control has received much more
attention in the literature than displacement control. Under force
control related to the problem treated here, a concentrated down-
ward force would be increased until snap-through occurs, which is
associated with a critical point (bifurcation or limit point) on the
equilibrium path (force versus displacement). The dependence of
the critical force on its location has been examined in several
papers, e.g., Plaut (1979) for shallow extensible arches with the
three standard sets of end conditions, Camescasse et al. (2013,
2014) for shallow extensible buckled beams with pinned ends,
Fargette et al. (2014) for a shallow inextensible buckled beam with
clamped ends, and Harvey and Virgin (2015) for shallow inex-
tensible buckled beams with pinned ends.

Some recent papers have examined snap-through under dis-
placement control, but have not presented results revealing the

dependency of the critical displacement on location. They include
Cazottes et al. (2009), Chen and Hung (2011), Fargette et al.
(2014), Pandey et al. (2014) and Harvey and Virgin (2015).

It is noted that for the unilateral displacement-control problem
treated here, the critical displacement is computed from a wavy
equilibrium shape of the initial unloaded structure. Therefore only
the unloaded arch or buckled beam needs to be analyzed. It is not
necessary to calculate an equilibrium path. Also, it is noted that
snap-through in the present problem occurs after snap-through
would have been exhibited under force control, and that part of
the structure lies below the horizontal when it snaps to a com-
pletely inverted configuration in the cases treated here.

The problem is formulated in Section 2. Results are presented in
Sections 3, 4, and 5, respectively, for buckled beams with pinned
ends, clamped ends, and one end clamped and the other pinned.
Circular arches with pinned ends are analyzed in Section 6, fol-
lowed by concluding remarks in Section 7.

2. Formulation

Linearly elastic, uniform arches and buckled beams are consid-
ered, with each end immovable and either pinned or clamped
(fixed). The total arc length is L, the span (base length) is B, the ini-
tial height is H, and the constant bending stiffness is EI. The origin
of the coordinate system is at the left end, the X axis is horizontal
along the chord connecting the two ends, the Y axis is vertical
(positive if upward), and the arc length is S. The structure is pushed
downward at the location X = C, where the vertical distance from

http://dx.doi.org/10.1016/j.ijsolstr.2015.02.044
0020-7683/� 2015 Elsevier Ltd. All rights reserved.

⇑ Tel.: +1 540 552 0111; fax: +1 540 231 7532.
E-mail address: rplaut@vt.edu

International Journal of Solids and Structures 63 (2015) 109–113

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2015.02.044&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2015.02.044
mailto:rplaut@vt.edu
http://dx.doi.org/10.1016/j.ijsolstr.2015.02.044
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


the horizontal is D, positive if upward, and the arc length is A. The
downward force associated with the displacement control at X = C
is F.

The following nondimensional quantities are utilized in the rest
of this paper:

s ¼ S=B; x ¼ X=B; y ¼ Y=B; a ¼ A=B; c ¼ C=B; d ¼ D=B;

h ¼ H=B; l ¼ L=B; m ¼ MB=ðEIÞ; f ¼ FB2=ðEIÞ; p ¼ PB2=ðEIÞ;
q ¼ QB2=ðEIÞ ð1Þ

Fig. 1 depicts a sketch of the structure in nondimensional terms
if the ends are pinned. The span is unity.

At location s, the coordinates are x(s) and y(s), and the angle
between the horizontal and the tangent is h(s). At the left end,
h(0) is denoted a. On the positive face of the cross section at s,
the internal horizontal force is p(s), positive if compressive, the
internal vertical force is q(s), positive if downward, and the bend-
ing moment is m(s), positive if counter-clockwise.

As the structure is pushed downward at x = c, the vertical dis-
placement d there decreases, while the associated force f at x = c
increases from zero and then decreases. When f reaches zero,
snap-through occurs (Fargette et al., 2014; Harvey and Virgin,
2015) and the structure jumps to an inverted equilibrium config-
uration, assuming that the system is damped. The vertical position
d at the onset of snap-through is denoted the critical displacement
dcr. Plots of dcr versus c will be presented for total arc lengths
l = 1.05, 1.1, 1.15, and 1.2.

The structure is modeled as an inextensible elastica. Its weight
is neglected, and a quasi-static analysis is conducted. For the buck-
led beams, which are unstrained when straight, the governing
equations for 0 < s < l, based on geometry, constitutive law, and
equilibrium, are (Plaut and Virgin, 2014)

x0ðsÞ ¼ cos hðsÞ; y0ðsÞ ¼ sin hðsÞ; h0ðsÞ ¼ mðsÞ;
m0ðsÞ ¼ qðsÞ cos hðsÞ � pðsÞ sin hðsÞ ð2Þ

The modification of Eq. (2c) for arches will be discussed in
Section 6. If the left end of the structure is pinned,
x(0) = y(0) = m(0) = 0. If it is clamped, x(0) = y(0) = h(0) = 0. Similar
conditions hold at the right end where s = l.

Numerical solutions are obtained with the use of a shooting
method, utilizing the subroutines NDSolve and FindRoot in
Mathematica (Plaut and Virgin, 2014). Different equilibrium solu-
tions can be found with the use of different initial guesses for the
unknown quantities in the shooting procedure. When f = 0, as in
the initial and inverted equilibrium shapes and in the wavy equi-
librium shape at the onset of snap-through, p(s) and q(s) are con-
stant, with q = 0 if the ends are pinned (Sections 3 and 6) or if
the ends are clamped and the equilibrium shape is symmetric (ini-
tial and inverted shapes in Section 4).

3. Pinned–pinned buckled beam

A beam with pinned ends is considered in this section. One end
is moved toward the other, and the beam is assumed to buckle
upward. Then the ends are constrained to be immovable. The ratio
of the total arc length to the span is l (corresponding to end-short-
ening l� 1). This is the initial buckled beam to which the displace-
ment control is applied.

For the case l = 1.1 and no applied force or imposed displace-
ment, the upper shape in Fig. 2 depicts the initial beam, the dashed
shape shows the anti-symmetric equilibrium shape that is below
the horizontal (the dotted line) on the left half, and the lower shape
is the inverted equilibrium shape. (It is noted that these shapes are
not the classical buckling modes of a pinned–pinned column,
which are only applicable at the onset of buckling from a straight
state.)

In comparing the dashed shape in Fig. 2 to the initial (upper)
shape, its axial compressive load p is four times as high, the mag-
nitude of its slope a at the left end is the same, the magnitude of its
bending moment at the quarter point x = 1/4 is twice that of the
initial shape at the midpoint x = 1/2, and the magnitude of its
height at the quarter point is half the central height h of the initial
shape.

If the buckled beam is pushed down at a location x = c on the
left half (0 < c 6 0.5), the critical displacement dcr is given by the
value of the dashed line in Fig. 2 at x = c if l = 1.1, and by similar
curves for other values of l. Due to symmetry, the reflection of
the left curve across the center (i.e., the mirror image) furnishes
the curve of dcr versus c for 0.5 6 c < 1.

Plots of dcr versus c are presented in Fig. 3 for l = 1.05, 1.1, 1.15,
and 1.2. The corresponding initial heights of the buckled beams are
h = 0.144, 0.205, 0.253, and 0.295. If the beam is pushed down at its
midpoint (c = 0.5), snap-through occurs when dcr = 0, i.e., when the
beam’s midpoint reaches the horizontal, as previously seen in
Harvey and Virgin (2015) and for clamped–clamped buckled
beams in Pandey et al. (2014). The minimum values of dcr in
Fig. 3 for l = 1.05, 1.1, 1.15, and 1.2, respectively, are �0.072,
�0.103, �0.127, and �0.148, which (as for all values of l) are equal
to �h/2 and occur at c = 1/4 and 3/4.

Fig. 1. Schematic in nondimensional terms of arch or buckled beam with pinned
ends.

Fig. 2. Three equilibrium shapes of pinned–pinned buckled beam for l = 1.1 and
f = 0.

Fig. 3. Critical displacement dcr versus push-down location c for pinned–pinned
buckled beam with l = 1.05 (solid), 1.1 (dashed), 1.15 (dotted), and 1.2 (dot-
dashed).
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