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a b s t r a c t

The formation of a prismatic dislocation loop in the two interfaces of a three-layer nanowire has been
theoretical studied from a static energy variation calculation, when the three layers are submitted to
misfit strains. Depending on the misfits and different radii of the layers, the possibility of formation of
the dislocation loop at the different layer interfaces has been characterized and a stability diagram is
provided for the structure. The effect of the external radius of the nanowire is also investigated.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The mechanical, electronic and optical properties of nanocom-
posite materials has been the topic of intensive researches from
both experimental and theoretical point of view because of the
numerous applications of these composite structures in engineer-
ing fields such as nanoelectronics and nanophotonics (Lauhon
et al., 2002; Link and El-Sayed, 2003; Vollath and Szabó, 2004;
Hu et al., 2006; Yan et al., 2011). Core–shell nanowires have been
for example used in nanowire field effect transistors (Bryllert
et al., 2006) or nano light emitting diodes (Hayden et al., 2005).
It is now well admitted that the different properties of the nanos-
tructures strongly depend on the stresses that may have various
origins among which one can cite the mismatch between the ther-
mal dilatation coefficients of the different phases or the misfit at
the interfaces between the lattices of the different crystals com-
posing the phases. The relaxation of the misfit stress, generated
during the growth of the phases for example, can be achieved via
the formation of threading or misfit dislocations which can in turn
strongly modify the morphology of the nanostructures, their opti-
cal and electrical properties as well as their mechanical strength.
The formation of dislocations in planar thin films on substrates
or in multilayers has already been studied, based on energetic con-
siderations (Matthews and Blakeslee, 1974; Freund, 1993). It has
been found that the formation of misfit dislocations in the inter-
faces is energetically favorable for critical thickness depending on
the misfit strain. The case of axi-symmetrical structures has also
been intensively studied (Liang et al., 2005; Ertekin et al., 2005;

Glas, 2006; Trammell et al., 2008). The formation of edge disloca-
tions and prismatic dislocation loops in a two-phase composite
cylinder submitted to misfit stress has been for example investi-
gated and a critical misfit parameter has been determined as a
function of the radius of the core cylinder (Gutkin et al., 2000;
Ovid’ko and Sheinerman, 2004). The effect of the ratio of the shear
modulii on the critical conditions for the formation of a dipole of
misfit dislocations has been also investigated for a precipitate
embedded in an infinite-size matrix and the equilibrium positions
of the dipole have been determined (Fang et al., 2008). Likewise,
the stability of a strained film grown on a nanopore has been inves-
tigated theoretically, the nanopores being considered as a new
promising class of nanosensors for the identification of biomole-
cules for example Wanunu and Meller (2007). The critical thick-
ness of the film associated with the formation of misfit screw
dislocations in the film-substrate interface has been then deter-
mined as a function of the ratio of the shear modulii of the film
and the substrate (Fang et al., 2009). Considering the plastic strains
due to the misfit dislocations generated to relax the misfit strain,
the critical thickness of the film in a core–shell structure has been
also determined as a function of the growth direction for the for-
mation of dislocation loops (Chu et al., 2013). In a series of papers
(Fang and Liu, 2006; Fang et al., 2009; Gutkin et al., 2013; Zhao
et al., 2014), the effects of interfaces have been investigated on
the formation of screw and edge dislocations in core–shell nano-
wires and in structures composed of nanoinhomogeneities embed-
ded in a matrix. The equilibrium positions of the dislocations have
been thus determined as a function of the interface stress.

The formation of dislocations in the interfaces of a core–multi-
shell quantum well heterostructure has been recently investigated
by means of finite element simulations (Fan et al., 2014). It has been
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found that the critical thickness of the outermost barrier decreases
as the well thickness increases and the core radius decreases. In the
present work, the formation of a prismatic dislocation loop in the
interfaces of a three-layer nanowire is investigated from an energy
variation calculation. The effect of the different radii of the layers
and of the misfit stress is characterized.

2. Modeling

A nanowire of length L and external radius r3 is composed of
three layers with r1 the interface radius between the layers 1 and
2 and r2 the interface radius between the layers 2 and 3, with
L� r3 (see Fig. 1). The elastic coefficients of the three layers are
assumed to be identical, the shear modulus is labeled l and the
Poisson’s ratio m. Due to the lattice mismatches at both interfaces,
a misfit strain ��;irr ¼ �

�;i
hh ¼ ��;izz ¼ ��i is considered in the layer i, with

i ¼ 1 for the inner layer, i ¼ 2 for the annular layer and ðr; h; zÞ the
cylindrical coordinate system. The elastic state of the structure is
first determined in the framework of the isotropic linear elasticity
theory taking the general form of the displacement field as
(Timoshenko and Goodier, 1951):

ui
rðrÞ ¼ Air þ

Bi

r
; ð1Þ

ui
zðzÞ ¼ Ciz; ð2Þ

in the layer i, with i ¼ 1;2;3. Assuming the elastic displacement
field should be finite as r ! 0, it yields B1 ¼ 0. The other constants
are determined from the following set of equations derived from
the mechanical equilibrium conditions of the structure (Liang
et al., 2005):
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where ri
kl and �i

kl correspond to the components of the stress and
elastic strain tensors of the layer i, respectively. To the first
order in ��1 and ��2, the constants Ai;Bi and Ci have been determined
to be:
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It can be stated at this point that the present calculation of the mis-
fit stress in a three-layer nanowire is a generalization of the equiva-
lent calculation performed in the case of a two-layer nanostructure
(Aifantis et al., 2007).

The problem of the determination of the stress and strain fields
of a circular prismatic dislocation loop lying in the plane z ¼ 0 is
now considered where rd is the radius of the dislocation and
~b ¼ b~ez its Burger vector, with b a positive constant and~ez the unit
vector along ðOzÞ axis (see Fig. 1). It is emphasized that the present
study is restricted to the case where ��1 > 0 and ��2 > 0 such that the
formation of the present dislocation loop is assumed to be favor-
able. The formation of a dislocation loop of Burgers vector
~b ¼ �b~ez when ��1 < 0 and ��2 < 0 can be derived from the present
analysis. Following Kroupa (1960), the stress field in the case of
an infinite-size solid is fully determined from a biharmonic func-
tion /0, whose Hankel’s transform defined by Sneddon (1951):

G0ðk; zÞ ¼
Z 1

0
r/0ðr; zÞJ0ðkrÞdr; ð17Þ

is given by:

G0ðk; zÞ ¼ 1� 2m
4ð1� mÞ brd

J1ðkrdÞ
k3 ð2mþ kzÞe�kz; ð18Þ

with J0 and J1 the Bessel’s functions of the first kind of zero and first
order, respectively. The different stress components r0

ij can be

deduced from this function /0. When the nanostructure is limited
by an axi-symmetrical free surface at r ¼ r3, a relaxation stress
rrel

ij should be considered such that the following boundary condi-
tions are satisfied at r ¼ r3 (Ovid’ko and Sheinerman, 2004; Cai
and Weinberger, 2009):

r0
rrðr3; zÞ þ rrel

rr ðr3; zÞ ¼ 0; ð19Þ

r0
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The solution to the problem provided by Ovid’ko and Sheinerman
(2004) is used in this work and the relaxation stress rrel

ij has been

characterized by a new bi-harmonic function /rel defined as
(Timoshenko and Goodier, 1951):

/relð~r;~zÞ ¼ lb3

2ð1� mÞ
~r2

d

Z 1

0
q1I0ð~rkÞ � ~rkq2I1ð~rkÞ½ � sinðk~zÞdk; ð21Þ

Fig. 1. Schematic representation of an axi-symmetrical structure of length L and
external radius r3, with L� r3. The nanowire is composed of three layers 1;2 and 3.
Misfit strains ��1 and ��2 are considered in the layer 1 of radius r1 and in the annular
layer 2 of thickness r2 � r1, respectively. A prismatic dislocation loop of radius rd

and Burgers vector ~b ¼ b~ez is lying in the layer 2.

J. Colin / International Journal of Solids and Structures 63 (2015) 114–120 115



Download English Version:

https://daneshyari.com/en/article/277342

Download Persian Version:

https://daneshyari.com/article/277342

Daneshyari.com

https://daneshyari.com/en/article/277342
https://daneshyari.com/article/277342
https://daneshyari.com

