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a b s t r a c t

The object of this paper is the definition of a generalised constitutive model for geomaterials, based on
elastoplasticity. Two are the tasks of the paper: the substantial enhancement of an existing hierarchical
yield function and the definition of an isotropic hardening constitutive model for the behaviour of both
cohesive and frictional geomaterials. After its definition, the new function will be compared with differ-
ent yield surfaces existing in literature in both the deviatoric and the meridian representation. Thereafter,
the constitutive model will be outlined by defining hierarchical expressions for hardening laws and
stress–dilatancy relationship in order to take into account several aspects of soil behaviour. Finally, some
comparisons between data from experimental tests on clay and sand will be made to highlight the
hierarchical structure of the proposed model.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The Modelling of the behaviour of cohesive and frictional
materials is often treated with different approaches and many
models can be found in the geotechnical literature, all describing
clays and sands as two classes of materials. Historically, such a dis-
tinction is evidenced by the formulation of Cam-Clay-like models
(Nakai and Matsuoka, 1986; Bardet, 1990; Kavvadas and
Amorosi, 2000; Rouainia and Wood, 2000; Vatsala et al., 2001;
Liu and Carter, 2002; Dafalias et al., 2006; Suebsuk et al., 2010)
and extended Mohr–Coulomb-like models (Ghaboussi and
Momen, 1982; Prévost, 1985; Muir Wood et al., 1994; Manzari
and Dafalias, 1997; Gajo and Muir Wood, 1999; Li and Dafalias,
2000; Li, 2002; Loukidis and Salgado, 2009; Lashkari, 2010).
Other approaches, instead, have been formulated to cover the gen-
eral behaviour of geomaterials in a unique framework (Desai et al.,
1986; Pestana and Whittle, 1999; Pestana et al., 2002a,b; Yao et al.,
2008).

This paper may be included in the latter category as it pursues
the goal to define a starting platform for modelling different pecu-
liar aspects related to soil behaviour. Defining a unique con-
stitutive platform is important not only from the conceptual
point of view, but also because it allows to simplify imple-
mentation into numerical codes. Fulfilling this task is clearly not
simple because, as stated by Muir Wood (1990), ‘‘The more effects
there are to be built into the model, the more elaborate that model
becomes, and the more soil parameters are required to specify the

model. The more parameters that are required, the more complex
the laboratory testing that is needed to determine their values
becomes’’. These aspects are self-evident in models that act as
unification of simpler plasticity models (Brannon et al., 2009).

On the other hand, constitutive modelling of geomaterials
should include many features as non-linear elasticity, pressure
sensitivity, non-associated flow, inherent and induced anisotropy,
void ratio dependency, cyclic phenomena, time dependence and
many others. These features, however, should be introduced
hierarchically on the basis of the experimental tests available for
the determination of parameters. In a word, models should be
‘‘advanced’’ desirably without the shortcomings listed by
Kolymbas (2000).

It is clear that a generalised model for soils based on elastoplas-
ticity requires the assumption of ‘‘powerful’’ expressions of yield
surfaces and plastic potentials in principal stress space as well as
generalised hardening laws. As for surfaces, their formulation must
be such as to prevent the occurrence of ‘‘false elastic domains’’
(Brannon and Leelavanichkul, 2010), which leads to numerical
problems in integration algorithms (Bier and Hartmann, 2006).
As far as the hardening laws are concerned, generalised functions
representative of both volumetric and deviatoric hardening should
be introduced.

The model that will be presented accounts for hyperelastic
behaviour and void ratio state dependency but the analysis is
restricted to single surface plasticity, isotropic hardening and time
independent behaviour. This version of the model is intended as
the basis for future extensions to the analysis of anisotropy, mate-
rial degradation, cyclic loading and time-dependent behaviour.

http://dx.doi.org/10.1016/j.ijsolstr.2015.02.047
0020-7683/� 2015 Elsevier Ltd. All rights reserved.

E-mail address: giuseppe.mortara@unirc.it

International Journal of Solids and Structures 63 (2015) 139–152

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2015.02.047&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2015.02.047
mailto:giuseppe.mortara@unirc.it
http://dx.doi.org/10.1016/j.ijsolstr.2015.02.047
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


2. New yield and plastic potential functions

The proposed function is based on a previous formulation
(Mortara, 2010) and can be put in the form

U ¼ q2 �UdUcU
2
q ð1Þ

Function U is written in terms of deviatoric stress q, mean stress p
and Lode angle h, which are defined as:

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3
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being rij the Cauchy stress tensor and sij ¼ rij � rkkdij=3 the devia-
toric stress tensor (where dij is the Kronecker delta). Note that, for
the generality of the model, the analysis is not restricted in terms
of the effective stress tensor r0ij. However, when used for soils, the
constitutive law is meant to be formulated in terms of effective
stresses. Product UdUcU

2
q defines the hierarchical structure of Eq.

(1) and rules the shape of the yield surface in meridian and devia-
toric planes. Functions Ud and Uc define the shape of the surfaces
in the meridian representation:

Ud ¼ SpadRna
p ð3Þ

Uc ¼ 1� ðsgn ncÞSpRnc
p ð4Þ

where Sp and Rp are given by

Sp ¼ 1� kRð Þsgn pt þ pð Þ � kRsgn p� pcð Þ ð5Þ

Rp ¼ 1� kRð Þ pt þ p
pt þ pc

����
����þ kR

p� pc

pt þ pc

����
���� ð6Þ

being kR a flag parameter that takes the value 0 or 1. Due to the def-
inition of the cap function Uc , if nc ¼ 0 the surface U ¼ 0 appears as
an open surface centred to the hydrostatic axis with linear or curved
generatrixes. This is one of the features not included in the previous
formulation (Mortara, 2010). In the above equations, na and ad are
given by:

na ¼ 1� sgn nc½ �2nd þ
nc 1� sgn nc þ R½ �nc

1� sgn ncð Þ 1� sgn nc þ R½ �nc
ð7Þ

ad ¼
1� sgn nc½ � þ sgn ncð ÞR2�na

1� sgn ncð Þ 1� sgn nc þ R½ �nc
SRgh pt þ pcð Þ½ �2 ð8Þ

where R and SR are defined as

R ¼ 1� kRð ÞRh þ kR 1� Rhð Þ ð9Þ

SR ¼ 1� sgn ncð ÞkR 2� 1
1� sgn nc þ R

� �
ð10Þ

Fig. 1. Selected shapes of surface U ¼ 0 for Uq ¼ 1: (a) cone, (b) cylinder, (c) paraboloid, (d) ellipsoid, (e) bullet, (f) tear.
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