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a b s t r a c t

It is well known, that thermo-elastic effects may have significant results upon the macroscopic response
in the mechanics of contact. On the other hand, as the scales in the contact system reduce progressively
(micro to nano-scales), the internal material lengths become important and their effect upon the
macroscopic response cannot be ignored. The present work extends the classical contact solution for a
hot flat punch indenting a homogeneous elastic half-plane, where heat conduction is permitted
(Comninou et al., 1981), to the analogous case of an indented microstructured solid. The behavior of
the indented material is modeled through the couple-stress elasticity theory, which introduces
characteristic material lengths and is appropriately modified in order to incorporate the thermal effects.
The problem formulation is based on singular integral equations, resulted from a treatment of the mixed
boundary value problems via integral transforms and generalized functions. The results show significant
departure from the predictions of classical thermoelasticity showing that the microstructural
characteristics of the material should not be ignored.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The contact of two bodies maintained at different temperatures
yields to thermo-elastic deformations at the contact region that,
although small, can affect the contact pressure distribution and,
depending on the temperature difference between the two bodies,
even the contact area. Assuming that the heat flows only through
the contact area and that no heat flows across the exposed sur-
faces, theoretical investigations by Barber (1971, 1973, 1978) on
indentation problems predict that the regions near the contact area
expand when the indentor’s temperature is raised over a specific
limit, causing the separation of the two solids, if the compressive
load is maintained constant. This separation is expected to cause
a reduction in the extent of the contact area between the indentor
and the indented elastic body. This behavior was also experimen-
tally confirmed by Clausing (1966) who, almost ten years earlier,
had shown that the thermal contact resistance between two con-
tacting bodies varies with the transmitted heat flux as a result of
the thermo-elastically driven changes in the extend of the contact
area.

It is well-known that material microstructure influences the
macroscopical behavior of complex materials, such as composites,

cellular materials and ceramics. In fact Maranganti and Sharma
(2007) showed that gradient effects play significant role in com-
plex materials with course-grain microstructure, while Chen
et al. (1998) developed a continuum model for cellular materials
and concluded that the continuum description of this class of
materials obeys a gradient elasticity theory of the couple-stress
type by naturally identifying the cell size with the material length
scale. Size effects have been also predicted for two dimensional
grid-works (Askar and Cakmak, 1968) and three dimensional cubic
lattices (Lakes, 1986) and, associated with Cosserat elasticity, lead
to an increase in moduli with decreasing specimen size relative to
the cell size (Onck et al., 2001). Finally, strain gradient effects, even
though difficult to be measured, have been observed in rigid
polyurethane and polymethacrylimide foams (Lakes, 1986;
Anderson and Lakes, 1994).

While classical continuum theories do not incorporate internal
length-scales and therefore cannot take into account microme-
chanical effects, the use of generalized continuum theories (see
e.g. Maugin, 2010) allows to achieve a more effective description
of the mechanical response when, for instance, stress concentra-
tions appear (Georgiadis, 2003; Gourgiotis and Piccolroaz, 2014)
or instability phenomena are involved (Dal Corso and Willis,
2011; Bacigalupo and Gambarotta, 2013). The need for such
generalized continuum models has also been verified through
experimental (Lakes et al., 1985; Beveridge et al., 2013) and
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theoretical (Smyshlyaev and Fleck, 1995; Bigoni and Drugan, 2007;
Bacca et al., 2013a,b; Bacigalupo, 2014) approaches.

During indentation, size effects can be dominant especially
when the indentation size is comparable to the material
microstructure. This process has been modeled employing classical
theories by directly incorporating the microstructural characteris-
tics into the model through purely geometrical considerations (see
e.g. Chen et al., 2004; Stupkiewicz, 2007; Fleck and Zisis, 2010;
Zisis and Fleck, 2010) and phenomenological approaches based
on gradient elasticity/ plasticity ideas, or on discrete dislocation
concepts (Muki and Sternberg, 1965; Poole et al., 1996; Begley
and Hutchinson, 1998; Nix and Gao, 1998; Shu and Fleck, 1998;
Wei and Hutchinson, 2003; Danas et al., 2012; Zisis et al., 2014).
Even though, purely elastic indentation of materials is hard to
achieve in practice (Larsson et al., 1996), elasticity can be of
interest in particular cases. In fact, there are materials, such as
polymers, that exhibit significant size effects also in the elastic
regime (Han and Nikolov, 2007; Nikolov et al., 2007).

In the present study, the steady-state plane-strain contact
problem of the hot frictionless flat punch indenting a couple-stress
elastic half-plane is investigated for the first time to analyze the
influence of the internal length scale upon the macroscopic
response. In addition to the dependence of the response upon the
heat flux amount from the indentor to the substrate and the
magnitude of the indentation load observed in the classical
framework, it is shown that the type of contact (perfect contact
throughout the width of the indentor or separation near the
corners of the punch) occurring is strongly affected by the
microstructural characteristics of the material. The opposite prob-
lem of a cool flat punch indenting an elastic half-plane with
microstructure, characterized by the possibility of having
imperfect contact (Barber, 1971, 1973, 1978; Comninou and
Dundurs, 1979), will be a subject of a future work.

The paper is organized as follows. In Sections 2 and 3 the
fundamental equations of couple-stress thermoelasticity are sum-
marized and particularized to plane-strain case. In Section 4 the
problem of the indentation of an elastic half-plane by a hot flat
punch is formulated and the appropriate boundary conditions are
described. The mixed boundary value problem is attacked via
Fourier transforms and singular integral equations (Sections 5
and 6). Accordingly, the integral equations are solved by employing
analytical and numerical considerations in Section 7. The results
are discussed in detail in the final part.

The attained results have genuine practical application in qual-
itatively identifying the influence of length scale effects in solids, a
requirement of practical importance for the advanced design of
materials and structures.

2. Fundamentals of couple-stress thermoelasticity

One of the most effective generalized continuum theories is that
of couple-stress elasticity, also known as Cosserat theory with con-
strained rotations (Mindlin and Tiersten, 1962; Koiter, 1964). In
this theory, the modified strain-energy density and the resulting
constitutive relations involve, besides the usual infinitesimal
strains, certain strain gradients known as the rotation gradients.
The generalized stress–strain relations for the isotropic case
include, in addition to the conventional pair of elastic constants,
two new elastic constants, one of which is expressible in terms
of a material parameter that has dimension of [length]. The pres-
ence of this length parameter, in turn, implies that the modified
theory encompasses the possibility of size effects. This theory
was extended by Nowacki (1966) who derived constitutive equa-
tions on the basis of thermodynamics of irreversible processes
and provided the fundamental differential equations of couple-
stress thermoelasticity.

We begin by giving an account of the theory of couple-stress
thermoelasticity as introduced by Nowacki (1966). In the absence
of inertia effects, the balance laws for the linear and angular
momentum lead to the following force and moment equations of
equilibrium (Mindlin and Tiersten, 1962)

rji;j þ Xi ¼ 0; ð1Þ

eijkrjk þ lji;j þ Yi ¼ 0; ð2Þ

where a Cartesian rectangular coordinate system Oxyz is used along
with indicial notation and summation convention. In these equa-
tions rij is the force-stress tensor, lij is the couple-stress tensor,
Xi denotes components of the body-force vector referred to a body
unit, and Yi denotes the components of the body-couple vector, a
comma denotes partial differentiation and eijk is Levi–Civita alter-
nating symbol. Further, rij can be decomposed into its symmetric
and anti-symmetric components as follows

rij ¼ sij þ aij ð3Þ

with sij ¼ sji and aij ¼ �aji, whereas it is advantageous to decom-

pose lij into its deviatoric l Dð Þ
ij and spherical l Sð Þ

ij parts in the follow-
ing manner

lij ¼ mij þ
1
3

dijlkk ð4Þ

with l Dð Þ
ij ¼ mij; l Sð Þ

ij ¼ 1=3ð Þdijlkk, and dij is the Kronecker delta.
Now, with the help of the Green-Gauss theorem and employing
the moment equation of equilibrium (2), one may obtain the anti-
symmetric part of the stress tensor as

aij ¼ �
1
2

eijk lpk;p þ Yk

� �
ð5Þ

from which follows that the stress tensor is symmetric in the
absence of body couples and for a vanishing divergence of couple-
stresses. Finally, combining (1)–(5) yields the final equation of equi-
librium which involves only the symmetric part stress tensor and
the deviatoric part of the couple-stress tensor

sji;j �
1
2

ejki mpj;pk þ Yj;k
� �

þ Xi ¼ 0: ð6Þ

Concerning the kinematical description of the continuum, the
following primary kinematical fields are defined in the framework
of the geometrically linear theory

eij ¼
1
2

uj;i þ ui;j
� �

; xi ¼
1
2

eijkuk;j; jij ¼ xj;i; ð7Þ

where eij is the strain tensor, xi is the rotation vector, and jij is the
curvature tensor (i.e. the gradient of rotation or the curl of the
strain) expressed in dimensions of [length]�1, which by definition
is traceless: jii ¼ 0 since xi;i ¼ 0. Accordingly, the compatibility
equations for the kinematical fields in (7) are (Naghdi, 1965)

eipmemjkeij;k þ epjmjmj ¼ 0; eikmejpmjij;k ¼ 0: ð8Þ

where the elimination of jij between (8) leads to the usual Saint
Venant’s compatibility equations for the strain tensor components.

Regarding the boundary conditions, we note that in the con-
strained couple-stress theory the normal component of the rota-
tion vector is fully specified by the distribution of tangential
displacements over the boundary. This implies that the traction
boundary conditions, at any point on a smooth boundary or section,
consist of the following three reduced force-tractions and two tan-
gential couple-tractions (Mindlin and Tiersten, 1962; Koiter, 1964)

PðnÞi ¼ rjinj �
1
2

eijknjmðnnÞ;k; ð9Þ
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