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a b s t r a c t

The present paper considers a non-prismatic beam i.e., a beam with a cross-section varying along the
beam axis. In particular, we derive and discuss a model of a 2D linear-elastic non-prismatic beam and
the corresponding finite element. To derive the beam model, we use the so-called dimensional reduction
approach: from a suitable weak formulation of the 2D linear elastic problem, we introduce a variable
cross-section approximation and perform a cross-section integration. The satisfaction of the boundary
equilibrium on lateral surfaces is crucial in determining the model accuracy since it leads to consider cor-
rect stress-distribution and coupling terms (i.e., equation terms that allow to model the interaction
between axial-stretch and bending). Therefore, we assume as a starting point the Hellinger–Reissner
functional in a formulation that privileges the satisfaction of equilibrium equations and we use a
cross-section approximation that exactly enforces the boundary equilibrium.

The obtained beam-model is governed by linear Ordinary Differential Equations (ODEs) with non-con-
stant coefficients for which an analytical solution cannot be found, in general. As a consequence, starting
from the beam model, we develop the corresponding beam finite element approximation. Numerical
results show that the proposed beam model and the corresponding finite element are capable to correctly
predict displacement and stress distributions in non-trivial cases like tapered and arch-shaped beams.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Non-prismatic beams are slender bodies in which the position
of the cross-section barycentre, the cross-section shape, and/or
the cross-section size vary along the prevalent dimension of the
body. Those bodies are widely used in engineering practice since
they provide effective solutions for optimization problems. As an
example, arc-shaped beams (in Fig. 1(a) the Risorgimento bridge,
Verona, Italy) could be optimized in order to carry the loads using
the minimum amount of materials. As an other, more sophisticated
example, windmill turbine blades (in Fig. 1(b) the fiberglass-rein-
forced epoxy blades of Siemens SWT-2.3–101 wind turbines) are
optimized with respect to different conflicting needs like aerody-
namic efficiency, noise pollution, forces induced on the tower.
The models that describe the behavior of non-prismatic beams
must be as efficient as possible in order to perform an effective
design. Unfortunately, non-prismatic beam models rarely satisfy
the needs of the practitioners, who must choose between refined

but too expensive models –like 3D Finite Element (FE) analysis–
and inexpensive but too coarse models –like frame analysis that
uses 1D elements with piecewise-constant cross-sections.

Consider first the tapered beams, i.e. a class of non-prismatic
beams with the following properties: (i) the beam has a straight
axis, (ii) the cross-section dimension varies linearly with respect
to the axis coordinate, and (iii) the cross sections have at least
two symmetry axes whose intersection coincides with the beam
axis. Under these conditions, the positions of either cross-section
barycentre (i.e., the point where a resulting axial force can be
applied without inducing any bending moment) and shear-centre
(i.e., the point where a resulting shear force can be applied without
inducing any torsion) do not depend on the beam-axis coordinate.
The tapered-beam modeling takes advantage of the tapered-beam
geometry since it ensures that axial-, transverse-, and rotation-
equilibrium equations are independent. As a consequence of their
simplicity, tapered beams are deeply investigated and many mod-
eling approaches have been proposed in the literature, as illus-
trated in the following. The simplest modeling-approach consists
in modifying the coefficients of the Euler–Bernoulli (EB) or
Timoshenko beam-model equations in order to take into account
the variation of the cross-section area and inertia along the beam
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axis. Banerjee and Williams (1985, 1986) illustrate significant
examples of this modeling approach, used for example in Vinod
et al. (2007) as the basis of the FE analysis. Unfortunately, it is
well-known that this approach introduces a modeling error pro-
portional to the rate of cross-section size change which is non-

negligible also for small rates (see Boley, 1963). Moreover,
investigating the effect of the variation of cross-section size,
Hodges et al. (2010) show that the model degeneration is a conse-
quence of the violation of the boundary equilibrium on the lateral
surface in the beam model formulation.

Nomenclature

E Young’s modulus
H 0ð Þ;H l

� �
initial and final cross-sections

H xð Þ beam cross-section
JHR Hellinger–Reissner (HR) functional
L2 Xð Þ;H div;Xð Þ 2D Sobolev spaces
L2 lð Þ;H1 lð Þ beam-model Sobolev spaces
M xð Þ bending moment
N xð Þ resulting axial stress
O; x; y Cartesian coordinate system
V xð Þ resulting shear
W; S0; St 2D HR functional spaces
D difference of cross-section height
X beam body i.e., 2D problem domain
ds; dr virtual fields
@
@x ;

@
@y x- and y- partial derivatives

c generic field
cref reference solution
ĉ axial coefficient functions
t̂x; t̂y projection of external load on profile functions
k wave length
r � �ð Þ divergence operator
m Poisson’s coefficient
H xð Þ cross-section height
s boundary displacement function
l beam length
u;v cross-section axial- and transversal- displacement

mean-values
@X domain boundary
@Xs; @Xt displacement constrained and externally loaded

boundaries

D fourth-order elastic tensor
E1;E2 engineering notation’s Boolean matrices
F beam-model load vector
G;H ODE coefficient matrices
Hrs;Hrr;Grs beam-model coefficient matrices
K sr;Krr FE stiffness matrices
Nci axis shape functions
Ps;Pr matrices collecting displacement and stress profile

functions
R matrix accounting for boundary equilibrium
T beam-model external load vector
r symmetric stress tensor field
f distributed load
n outward unit vector
pc profile functions
s displacement vector field
t external load distribution
rx;ry; s axial, transversal, and shear stressesfW ; eS beam-model variational formulation spaceseT FE load vectoreci numerical coefficients
e xð Þ eccentricity
erel
c relative error

hl xð Þ;hu xð Þ cross section lower- and upper- boundaries
l beam longitudinal axis
m number of profile functions
u; v horizontal and vertical displacements
t number of axis shape functions

Fig. 1. Examples of structures that could be seen as non-prismatic beams.
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