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a b s t r a c t

This paper presents a bounding surface plasticity model for sand that considers fabric and its evolution
during monotonic shearing. The model is based on critical-state soil mechanics. The bounding surface
controls sand stiffness through a relationship that depends on the distance from the current state to
the bounding surface calculated using a rigorous algorithm. Dilatancy, which measures the plastic
volume change caused by plastic shear deformation, is captured through a newly introduced phase trans-
formation line. The fabric is quantified based on the distribution of contact normals between particles; it
affects the location of the phase transformation line (thus, the dilatancy). Simulation results using the
model are in excellent agreement with test data for Toyoura sand.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The response of sand, a particulate (granular) material, to load-
ing has some key features: (1) highly non-linear stress–strain
response (Carraro et al., 2004; Mitchell and Soga, 2005; Murthy
et al., 2007; Salgado, 2008), (2) achievement of a critical (steady)
state upon substantial shearing (Casagrande, 1936; Mitchell and
Soga, 2005; Salgado, 2008; Schofield and Wroth, 1968), (3) dila-
tancy (plastic volumetric change caused by plastic shear deforma-
tion) (Bolton, 1986; Chakraborty and Salgado, 2009; De Josselin de
Jong, 1976; Rowe, 1962; Salgado, 2008; Zhang and Salgado, 2010)
and (4) dependence on fabric, which represents how particles
assemble (Oda, 1972; Oda et al., 1978). A constitutive model
should capture these properties if it is to describe the mechanical
response of sand properly.

Bounding surface models for sand (Dafalias and Manzari, 2004;
Li and Dafalias, 2012; Li, 2002; Loukidis and Salgado, 2009;
Manzari and Dafalias, 1997; Taiebat and Dafalias, 2008) have cap-
tured the highly nonlinear stress–strain relationship of sand and its
achievement of a critical state successfully. If soil is in a critical
state, the stress state and density of the soil no longer change, even
if shearing continues. The locus of critical states in stress space is
the critical state surface. The bounding surface (also a surface in
stress space) conceptually bounds every possible stress state that

the soil may reach. In these models, the bounding surface is ini-
tially larger than the critical state surface. As loading proceeds,
the bounding surface shrinks towards the critical state surface;
consequently, the final destination of the stress state is on the criti-
cal state surface.

There are generally two ways for the bounding surface to bound
every possible stress state during loading: enforcement of the con-
sistency condition on the bounding surface (Li, 2002) or numerical
enforcement of the concept by having the hardening modulus take
negative values when the stress steps outside the bounding surface
(Dafalias and Manzari, 2004; Li and Dafalias, 2012; Loukidis and
Salgado, 2009; Manzari and Dafalias, 1997). In the bounding sur-
face models following this second approach, the stress state can
exist marginally outside the bounding surface, but, as soon as it
steps outside it, the negative hardening modulus moves it back
towards the bounding surface. Generally, in this type of bounding
surface model, the hardening modulus is proportional to the dis-
tance between the stress state and the bounding surface, which
can itself take either negative or positive values; thus, rigorous
determination of this distance is important to estimate material
stiffness. In this study, the distance to the bounding surface is cal-
culated by identification of an image stress state on the bounding
surface corresponding to the current stress state and the current
loading direction. Woo and Salgado (2014) proposed a rigorous
algorithm to determinate the image point on the bounding surface
that is valid under multi-axial conditions. The present constitutive
model follows that algorithm.

For a wide range of possible initial states, sand experiences
contraction until it reaches the phase transformation point, after
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which it dilates with further shearing. Proper determination of
when phase transformation occurs is therefore a key factor in the
description of the dilatancy response in constitutive modeling. In
bounding surface models for sand (Dafalias and Manzari, 2004; Li
and Dafalias, 2012; Loukidis and Salgado, 2009; Manzari and
Dafalias, 1997), phase transformation has been captured using a
dilatancy surface in stress space. In these models, the dilatancy
surface corresponds conceptually to the phase transformation
points. The dilatancy surface has certain limitations when the rig-
orous definition of the image point used in this study is adopted,
including an inability to simulate certain complex loading patterns.
These limitations exist because, unlike the bounding surface, the
dilatancy surface does not bound the stress state. This means that
it is possible for a stress state to be reached outside the dilatancy
surface from which certain loading directions will produce no
image point on (no intersection with) the dilatancy surface under
multi-axial conditions. This limitation may not exist or may be rare
if projection rules other than the one adopted here are used, but,
for the purposes of this paper, a dilatancy surface is not used.
Instead, the present constitutive model estimates dilatancy using
a newly-introduced phase transformation line. The dilatancy of
sand is determined based on the location of the current state with
respect to the phase transformation line.

The fabric, how particles assemble, has an important role in the
mechanical response of sand. For example, according to Oda
(1972), sand specimens prepared using different methods (each
producing a different fabric) show significantly different mechani-
cal response, all other things being equal. In the present study, fab-
ric is quantified through a tensor defined based on the distribution
of the unit vectors normal to the plane of contact between any two
particles. The fabric effect factor, which is defined as the double-
dot product between an incremental loading direction and the fab-
ric tensor, represents the interaction between loading and fabric; it
is used in the present constitutive model to consider the effect of
fabric on dilatancy. The model also allows fabric to evolve during
loading.

The present paper lays out the fundamental concepts on which
the present constitutive model is based in Section 2. Section 3
describes the constitutive model formulation, including the hard-
ening and flow rules. Section 4 shows the model performance in
simulating the results of experiments with Toyoura sand.
Section 5 summarizes the contributions of the present paper. The
paper uses geo-mechanics sign convention (compression, contrac-
tion positive).

2. Fundamental concepts

2.1. The critical (steady) state

At the critical state, a state that a particulate material
eventually reaches if sheared far enough, the following holds for
a saturated sand loaded in triaxial compression or extension:

_p0 ¼ 0; _q ¼ 0; _e ¼ 0; _eq – 0 ð1Þ

where p0 is the mean effective stress ð¼ r0kk=3 ¼ rkk=3� u, where u
is the pore-water pressure), q (= (3J2)1/2) is a representation of the
octahedral shear stress, e is void ratio, eq is a representation of the
octahedral shear strain, and the dots above the variables represent
time differentiation. Expressions (1) state that stress and volume do
not change once sand reaches the critical state under monotonic
loading conditions; thus, the critical state can be defined using
stress (p0 and q) and volume (e).

Fig. 1 shows the locus of critical state in p0–q–e space. In
undrained (constant-volume) shearing, sand generally crosses a
phase transformation state, at which dp0 changes sign, before it

reaches the critical state. In drained (du = 0) shearing, an ulti-
mately dilative sand first contracts, goes through a state at which
the volumetric strain increment dev changes sign (which is not
the phase transformation state, as discussed later in the paper),
then dilates on its way to the critical state. Its shear stress q peaks
at a value greater than the critical-state shear stress qcs before the
sand softens to a stable critical-state value. Regardless of the drai-
nage conditions, the final destination of the sand is the critical
state; thus, in the development of constitutive models for sand, it
is essential to express the critical state in a mathematically rigor-
ous manner.

According to Li (1997), the critical state line (CSL in Fig. 1) for
sand in the e–p0 plane can be expressed as:

ecs ¼ Cc � kðp0=pAÞ
n ð2Þ

where ecs is the critical-state void ratio; pA is the atmospheric pres-
sure (� 100 kPa); Cc is the critical-state void ratio at p0 = 0; k and n
are material constants. In the formulation of constitutive response,
it has often been assumed (Dafalias et al., 2004; Loukidis and
Salgado, 2009; Papadimitriou et al., 2005) that the CSL in the e–p0

plane depends on the fabric of the sand and the loading direction.
Li and Dafalias (2012) argued, using thermodynamics, that the
CSL is unique in the e–p0 plane; experimental results from
Yoshimine and Kataoka (2007) provide evidence that the CSL in
e–p0 space is the same in triaxial compression and extension.
While we recognize that the uniqueness of the CSL in e–p0 space
is not yet definitively proven, we believe that the evidence from
high-quality testing does provide support for this uniqueness, and
the present constitutive model assumes that the critical-state line
in e–p0 plane is unique; specifically, it assumes that the CSL does
not depend on initial fabric or loading direction.

The critical-state surface (CSS in Fig. 1) in stress space is com-
monly defined by qcs ¼ Mcp0cs, where qcs is the critical-state shear
stress; p0cs is the critical-state mean effective stress; and Mc is the
critical-state stress ratio. As p0cs can be determined from the projec-
tion of the CSL on the e–p0 plane, the only parameter required for
estimation of qcs is Mc. For particulate materials, Mc depends on
the loading direction; Mcc, the value of Mc in triaxial compression,

Fig. 1. The critical state line (CSL), critical state surface (CSS), and undrained and
drained loading paths in p0–q–e space.
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