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a b s t r a c t

Wave-based Structural Health Monitoring (SHM) to detect damages in civil and mechanical structures is
a growing research field. In order to apply SHM to multi-wire cables, in this work, ultrasonic wave prop-
agation in such coupled waveguides is studied theoretically, numerically and experimentally. In addition
to transient finite element simulations, novel energy-based models are presented. With these models,
efficient simulations of cables with many wires can be performed. Both finite element and energy-based
models are verified with sophisticated experiments.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Regular monitoring of civil and mechanical structures predicts
failure and allows for the estimation of the residual life cycle.
New Structural Health Monitoring (SHM) methods target multi-
wire cables, such as stay cables of cable-supported bridges and
overhead power lines. These cable structures are subject to wind-
induced vibrations, temperature changes and corrosion. Failure of
these multi-wire cables begins with cracks in individual wires
and can eventually lead to a fracture of the entire cable (Siegert
and Brevet, 2005). Since regular visual inspection is an expensive
and hazardous practices that is limited to the detection of surface
flaws, automated monitoring schemes are developed. Vibration-
based techniques either monitor external loads or environmental
conditions, or the structural response. Algorithms for the first
two concepts usually rely on statistical processing whereas
changes in eigenfrequencies of the target structure are typically
analyzed for monitoring the structural state (Alampalli, 2000).

This work focuses on active wave-based techniques for damage
detection. An exemplary scheme for stay cables (Gimsing and
Georgakis, 2012) of cable-stayed bridges is depicted in Fig. 1(a):
Elastic waves are excited in the waveguide structure and parts of
the wave are reflected and measured by a sensor. Damage
detection algorithms then determine the structural state.

Waveguides are structures that confine the propagation of
waves in one direction. In particular, guided waves qualify for
material evaluation since these waves travel long distances with
little decay. However, the generally multimodal and dispersive
nature of guided wave propagation has to be accounted for
(Graff, 1991). Also, mode conversion may occur when waves
encounter discontinuities (Bischoff et al., 2014). Subsequently,
waves often consist of the superposition of several modes with dif-
ferent velocities, and sophisticated signal processing is required to
analyze the measurement signals. Often such analyses are per-
formed using the short time Fourier transform (STFT) (Baltazar
et al., 2010) or wavelet transform (Nishino et al., 2006).

Moreover, real cable structures are composed of several twisted
wires, as shown in Fig. 1(b) for a typical power line cable. The heli-
cal geometry (Treyssède, 2007) and the contact between wires
complicate modeling of the multi-wire cables (Rizzo and Lanza di
Scalea, 2004). Furthermore, the cables might be composed of wires
of different material, resulting in different wave velocities.

Transient finite element (FE) simulations are typically used to
investigate wave propagation in waveguides (Moser et al., 1999).
Simulations for multi-wire cables require, however, fine meshing,
resulting in a very large number of nodes. Typically, strands of
multi-wire cables are combined to one solid waveguide to reduce
the computational costs (Raiutis et al., 2014). Alternatively, differ-
ent semi-analytical methods have been developed recently. With
the Waveguide Finite Element (WFE) method (Mace et al., 2005)
and the spectral finite element (SFE) method (Gavrić, 1995;
Finnveden, 1997), two efficient modeling techniques are available
for arbitrary waveguides. Treyssède and Laguerre (2010) analyzed
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the helical seven-wire cables using a modified semi-analytical FE
method. While they assumed perfectly bonded wires, Schaal
et al. (2013) used the WFE method to investigate coupled waveg-
uides, considering a more realistic frictional contact. In addition,
Haag et al. (2009) introduced an energy-based approach to model
wave propagation in coupled waveguides.

In the article at hand, first wave propagation in cylindrical
waveguides is introduced in Section 2, including an overview over
dispersion effects. In Section 3, efficient FE modeling of coupled
cylindrical waveguides is shown. In Section 4, a computationally
efficient energy-based approach is presented. Two coupling models
are derived to represent the frictional contact between twisted
wires. Both models are applicable to arbitrary multi-wire cables
and can be implemented on low-cost sensor nodes for damage
detection (Schaal and Gaul, 2014). The experimental setup for
experimental verification of numerical methods is introduced in
Section 5. Thereby, also excitation of waves in waveguides and
boundary conditions of FE simulations are discussed. In Section 6,
previously presented numerical models are then fit to experimental
data and a detailed comparison of the results is shown. Finally, the
results are discussed in the last section and an outlook is given.

2. Wave propagation in cylindrical waveguides

Guided waves propagate in one direction while having charac-
teristic spatial displacement fields along all three axes. Solid bodies
that allow for propagation of guided waves are called waveguides.
The displacement field u of a harmonic guided wave in cylindrical
structures with the angular frequency x can be written as

uðx; tÞ ¼ ûðx1; x2Þejðkx3�xtÞ ¼ ûðr;uÞejðkz�xtÞ ð1Þ

in Cartesian and cylindrical coordinates (see Fig. 3), respectively.
The wave modes are characterized by their respective displacement
fields ûðr;uÞ, which are also called mode shapes. For cylindrical
waveguides, three types of waves may propagate: longitudinal,
flexural and torsional waves (Achenbach, 1987). Using common
nomenclature, these waves are abbreviated as L(0,m), Fðn;mÞ and
T(0,m) with order n and sequential numbering m. For complex
angular wavenumbers k, solutions with no imaginary part corre-
spond to non-decaying propagating waves, while solutions with a
nonzero imaginary part are considered as non-propagating waves.
Evanescent modes, which decay exponentially with distance, form
a subclass of non-propagating waves.

Fig. 2(a) shows the dispersion curves for an aluminum cylinder
with radius R ¼ 2 mm. Red lines represent longitudinal, blue lines
flexural and black lines torsional modes, respectively. The curves
are determined using the WFE method (Mace et al., 2005; Schaal
et al., 2013) out of convenience. Alternatively, the analytical
dispersion equations (Graff, 1991) can be solved numerically. In
Fig. 2(b), the group velocity cg ¼ dx

dk is shown, which is also referred
to as the energy transport velocity (Lee et al., 2007) and is used in

the following derivations. From the diagram it is clear that the
longitudinal wave L(0,1) is the fastest wave below �600 kHz,
which is one of the reasons, why the L(0,1) mode is typically used
for SHM purposes. Note, frictional coupling of cylindrical waveg-
uides does not affect dispersion properties of the L(0,1) mode
(Schaal et al., 2013).

2.1. Energy of propagating waves

In the following, a description of the energy of a propagating
wave is derived in order to develop new computationally efficient
models for describing wave propagation in multi-wire cables.
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Fig. 1. SHM concept for stay cables of cable-stayed bridges and overhead power lines.

T(0,1)

L(0,1)

Wavenumber [rad/m]

Fr
eq

ue
nc

y
[k

H
z]

F(1,2)

F(1,1)

0 500 1000 1500
0

200

400

600

800

(a) Frequency versus wavenumber
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(b) Group velocity versus frequency

Fig. 2. Dispersion curves for aluminum cylinders with radius R ¼ 2 mm. Red lines
represent longitudinal, blue lines flexural and black lines torsional modes,
respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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