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a b s t r a c t

Stress analysis is carried out in an isotropic layer weakened by multiple cracks under time-harmonic
loading. The viscous damping is used to model energy dissipation in the material. The analysis is based
on the stress fields caused by climb and glide of an edge dislocation in the layer. The solution for disloca-
tion is obtained by means of the integral transform method. Furthermore, stress analysis in the intact
layer under self-equilibrating harmonic point loads is carried out. These solutions are employed to derive
a set of Cauchy singular integral equations for analyzing cracks parallel/perpendicular to the layer bound-
ary. The numerical solution of these equations yields dislocation densities on a crack surface which are
used to determine dynamic stress intensity factors over a range of frequency. The natural frequencies
of layers with horizontal cracks are obtained and the interaction of multiple cracks is studied.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Structures under dynamic loads are vulnerable to fatigue
failure. An accurate stress analysis is of paramount importance
for a reliable life estimation of a mechanical component under per-
iodic loads. In particular, in bodies with multiple cracks subject to
dynamic loads, owing to the formation of regions with high stress
gradient and also interaction among cracks, stress evaluation is a
complicated problem. For cracked regions with simple geometries,
however, analytical procedures may be employed to achieve the
task. The solutions may be used to benchmark the results obtained
from numerical procedures. A brief review of literature concerning
in-plane periodic excitation of cracked media is presented here.
Mal (1970) studied the diffraction of normally incident longitudi-
nal and anti-plane shear waves by a Griffith crack in an isotropic
infinite plane. The problem of diffraction of stress wave by a crack
perpendicular to the interface of two dissimilar half-planes was
considered by Loung et al. (1975). A set of singular integral equa-
tions was derived by means of integral transform technique.
These equations were solved numerically and the effects of mate-
rial properties and crack distance from the interface on the stress
intensity factors (SIFs) were analyzed. A half-plane weakened by
a subsurface crack perpendicular to its boundary was solved by
Achenbach and Brind (1981). The half-plane was under time-
harmonic tractions and the Fourier transform was employed to
obtain modes I and II SIFs. The variation of SIFs versus load

frequency for different locations of crack was investigated. The
mode I analysis of a Griffith crack which was perpendicular to
the boundaries of an isotropic strip and excited by a longitudinal
harmonic load was accomplished by Srivastava et al. (1981). Keer
et al. (1984) analyzed a subsurface crack parallel to the boundary
of a half-plane under time-harmonic excitation. The problem for-
mulated as a system of integral equations for the dislocation den-
sities. These equations were solved numerically and SIFs were
obtained. The resonance phenomenon was observed as crack
approached the free surface of half-plane. Qu (1994) studied the
stress fields caused by a finite crack along the interface of two dis-
similar half-planes under harmonic elastic waves. The behavior of
crack-tip singular fields was oscillatory with the index equal to
that of cracks under static loading. The interaction between an
arbitrarily oriented micro defect and a main crack subjected to a
plane incident wave was studied by Meguid and Wang (1995).
The effects of wave frequency and micro crack orientation on the
SIFs of the main crack were also analyzed. Itou (1996) considered
an infinite orthotropic plane weakened by two collinear cracks
under normal harmonic elastic wave. The problem was reduced
to a set of dual integral equations which were solved by means
of Schmidt method. An article by Zhou et al. (2004) deals with a
finite crack in a functionally graded plane under time harmonic
loading. The material properties of the plane, Young’s modulus
and mass density, were assumed to vary exponentially perpen-
dicular to the direction of the crack surface while Poisson’s ratio
was constant. The integral transform and Schmidt methods were
utilized for the solution and the effect of excitation frequency on
SIF was investigated. Ayatollahi and Fariborz (2009) solved the
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problem of multiple smooth cracks in an infinite isotropic plane
under time-harmonic loading. They used distributed dislocation
technique to construct a set of Cauchy singular integral equations
for the problem. These equations were solved numerically to ana-
lyze interaction between cracks.

All the above investigations were either for infinite planes with
cracks or layers weakened by a single crack. In this article, the
problem of climb and glide of an edge dislocation in a layer sub-
jected to time-harmonic loading is solved. The dislocation cut is
either parallel or perpendicular to the layer boundaries. The struc-
tural energy dissipation is taken into account and it is modeled by
viscous damping. By means of the distributed dislocation tech-
nique, Hills et al. (1996), the dislocation solutions are used to for-
mulate integral equations for a layer weakened by multiple
horizontal/vertical embedded cracks. Contrary to the static case,
however, the formulation may not be used for the analysis of obli-
que cracks. Moreover, crack closing is not permitted. Therefore, in
addition to dynamic load a sufficiently large static force, to prevent
cracks closing, may be applied on the layer. However, the solution
to static case is given in Fotuhi and Fariborz (2008); thus, by virtue
of superposition principle, it suffices to analyze the dynamic prob-
lem. For a small value of load frequency the static results are recov-
ered. The first critical frequency of cracked layers is obtained and
the effects of damping on stress intensity factors of cracks are
investigated. Furthermore, the interaction between cracks is stud-
ied. In general, the time-harmonic solution may be used, via
Fourier synthesis, for the steady-state analysis of a problem.

2. Dislocation solution

In the plane infinitesimal theory of elasticity, the constitutive
equations for isotropic materials are expressed as

rXX ¼
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where l is the shear modulus of elasticity, j is the Kolosov constant
of the medium, UX and UY are displacement components in the X
and Y directions, respectively. The Kolosov constant is j = 3 � 4m
for plane strain and j = (3 � m)/(1 + m) for plane stress situations,
where m is the Poisson’s ratio. We assume that energy dissipation
in the body which may be attributed to the formation of plastic
region around crack tips is proportional to the velocity of motion,
i.e., viscous damping. Thus, equations of motion yield
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where q is the mass density and g is the damping coefficient of
material. From Eqs. (1) and (2), we arrive at Navier’s equations as
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In a time-harmonic motion with angular frequency x, the time
dependency of displacement field is expressed as

½UXðX;Y; tÞ;UYðX;Y; tÞ� ¼ ½uðX;YÞ;vðX;YÞ�eixt ð4Þ

where i ¼
ffiffiffiffiffiffiffiffi
�1:
p

Eq. (3) in view of (4) reduces to
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Henceforth, the factor eixt common to all field variables is omit-
ted. It is worth mentioning that, in practice energy dissipation
depends on frequency of motion. The present analysis is capable
of handling this dependency. We consider a layer with thickness
h containing a Volterra edge dislocation with Burgers vectors bX

and bY, associated with climb and glide of the dislocation, respec-
tively. The dislocation is situated at (0, n), Fig. 1, and the dislocation
cut is perpendicular to the boundary of the layer. The dislocation
may be identified as

uð0þ;YÞ � uð0�;YÞ ¼ bXHðY � nÞ
vð0þ;YÞ � vð0�;YÞ ¼ bY HðY � nÞ

ð6Þ

where H(.) is the Heaviside step function. Moreover, the continuity
of traction on the dislocation cut requires that

rXXð0�;YÞ ¼ rXXð0þ;YÞ
rXYð0�;YÞ ¼ rXYð0þ;YÞ; Y > n

ð7Þ

It is expedient to decompose the problem into symmetric and
anti-symmetric problems with respect to the Y-axis and consider
the half layer X > 0. In the symmetric problem, we deduce from
conditions (6) and (7) that

uð0;YÞ ¼ bX

2
HðY � nÞ; rXYð0;YÞ ¼ 0 ð8Þ

whereas, in the anti-symmetric case, the conditions become
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2
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Moreover, the traction free condition on the layer surface
implies that
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ð10Þ

In the former problem, we eliminate variable X by applying
Fourier sine and cosine transforms to first and second Eq. (5),
respectively. Taking into account Eq. (8) and assuming that stress
fields decay sufficiently rapidly as X ?1, results in
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where subscripts s and c designate, respectively, Fourier sine and
cosine transforms of the relevant quantity, k is Fourier transform
variable and d(.) is the Dirac delta function. Analogously, in the
anti-symmetric problem, we apply Fourier cosine and sine trans-
forms, respectively, to the first and second Eq. (5) and utilize condi-
tions (9) to arrive at
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