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a b s t r a c t

This work presents a rate-dependent constitutive model for porous single crystals with arbitrary number
of slip systems and orientations. The single crystal comprises cylindrical voids with elliptical
cross-section at arbitrary orientations and is subjected to general plane-strain loadings. The proposed
model, called modified variational model (MVAR), is based on the nonlinear variational homogenization
method, which makes use of a linear comparison porous single crystal material to estimate the response
of the nonlinear porous single crystal. The MVAR model is validated by periodic finite element
simulations for a large number of parameters including general in-plane crystal anisotropy, general
in-plane void shapes and orientations, various creep exponents (i.e., nonlinearity) and general plane
strain loading conditions. The MVAR model, which at the present state involves no calibration
parameters, is found to be in good agreement with the finite element results for all cases considered
in this work. The model is then used in a predictive manner to investigate the complex response of porous
single crystals in several cases with strong coupling between the anisotropy of the crystal and the
(morphological) anisotropy induced by the shape and orientation of the voids.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Voids originating in the manufacturing process have an impor-
tant effect on the lifetime as well as deformability of materials and
play an important role on the constitutive response of metallic
alloys. Indeed, as recently indicated by experimental observations
(Srivastava et al., 2012) at high enough temperatures on tensile
specimens, the growth of initially present processing induced voids
in a nickel based single crystal superalloy as well as in standard
polycrystals played a significant role in limiting creep life. The
presence of voids (or cracks) in metals is known to be one of the
major causes of ductile failure, as addressed in pioneering works
by Mc Clintock (1968), Rice and Tracey (1969) and Gurson
(1977). Most of the studies so far have been carried out in the
context of two-phase material systems comprising an isotropic
rate-(in) dependent matrix phase (metal usually described by
von Mises yield criterion or creep potential) and a voided phase
(pores of spherical, spheroidal or arbitrary ellipsoidal shapes).
The models proposed previously for ductile damage growth use

either limit analysis (see for instance Tvergaard and Needleman,
1984; Gologanu and Leblond, 1993; Leblond et al., 1994;
Monchiet et al., 2007; Madou and Leblond, 2012a,b) based on
Gurson (1977) work, or a variational homogenization theory using
the concept of a linear comparison composite (see for instance
Ponte Castañeda, 1991a; deBotton and Ponte Castañeda, 1995;
Danas and Ponte Castañeda, 2009a).

Far fewer results have been obtained for rate-(in) dependent
anisotropic matrix systems, generally based on a phenomenologi-
cal Hill-type matrix (see Benzerga and Besson, 2001; Benzerga
et al., 2004; Monchiet et al., 2008; Keralavarma et al., 2011). The
case of porous single crystals have only been studied through dis-
crete dislocations dynamic by Huang et al. (2007, 2012), Hussein
et al. (2008), Segurado and Llorca (2010) and molecular dynamics
at smaller scales (Traiviratana et al., 2008; Zhao et al., 2009; Tang
et al., 2010a,b), or using finite element simulations (Yerra et al.,
2010; Ha and Kim, 2010). Such anisotropic matrix systems have
known slip directions and contain usually a small volume fraction
of impurities. When these material systems are subjected to exter-
nal loads impurities fail or decohere leading to the creation of
pores, which in turn evolve in size, shape and orientation
(Srivastava and Needleman, 2012). This complex evolution of
microstructure together with the evolution of the rate-dependent
matrix anisotropy is critical in the prediction of the eventual
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fracture of the specimen under monotonic and cyclic loading
conditions.

Nevertheless, there have been only a handful of models for
porous single crystals which deal with special void geometries,
loading conditions and slip system orientations. Such studies
involve the study of cylindrical voids with circular cross-section
in a rigid-ideally plastic face-centered cubic (FCC) single crystals
using slip line theory (Kysar et al., 2005; Gan et al., 2006; Gan
and Kysar, 2007), the study two dimensional ‘‘out of plane’’
cylindrical voids with circular cross-section subjected to anti-plane
loadings (Idiart and Ponte Castañeda, 2007) and that of spherical
voids (Han et al., 2013; Paux et al., 2015). While each one of these
studies has its own significant contribution to the understanding of
the effective response of porous single crystals none of them is
general enough in the sense of arbitrary void shapes and
orientations and general loading conditions.

In this regard, the scope of the present work is to develop a two-
dimensional model in plane-strain loading conditions that is able
to deal with general in-plane crystal anisotropy, arbitrary elliptical
void shapes and orientations and general plane strain loading con-
ditions. While this model is not three-dimensional it represents a
necessary step towards this direction. It allows for a fully analytical
treatment of the problem and thus provides a good insight of the
effective response in such highly nonlinear and highly anisotropic
systems. A three-dimensional model is then feasible using the
same theory that is developed in the present work and.

More specifically, in Section 2, we use the variational linear
comparison composite theory of Ponte Castañeda (1991a) to pro-
vide a fully analytical model, called the modified variational
(MVAR) model (see Danas and Aravas, 2012), in two-dimensions.
Subsequently, in Section 4, we present in detail the finite element
(FE) periodic unit-cells which will be used to assess the MVAR
model as well as to visualize the underlying deformation fields in
the context of porous single crystals. In Sections 5 and 6, we pre-
sent comparison between the MVAR predictions and the FE results
for a wide range of crystal anisotropy, arbitrary elliptical void
shapes and orientations, porosities, creep exponents and general
plane-strain loading conditions. Finally, we conclude with
Section 7.

2. Theory

Consider the RVE (representative volume element) X to be a
two-phase porous single crystal with each phase occupying a

sub-domain XðrÞ ðr ¼ 1;2Þ. The vacuous phase is identified with
phase 2 and the non-vacuous phase (i.e., single crystal matrix) is
denoted as phase 1. At this point it is important to note that we
make use of the hypothesis of separation of length scales which
implies that the size of the voids (microstructure) is much smaller
than the size of the single crystal and the variation of the loading
conditions at the level of the single crystal. In the following, the

brackets h�i and h�iðrÞ define volume averages over the RVE (X)

and the phase r (XðrÞ), respectively.

2.1. Microstructure

The present study focuses on two-dimensional (2D) porous sin-
gle crystals containing polydisperse cylindrical voids aligned with
the x3-axis. The voids are randomly and uniformly distributed in
the transverse plane x1–x2. This material is subjected to plane-
strain loading in the x3-direction. In this regard, we first define
the relevant microstructural variables, which serve to describe
the volume fraction of the vacuous phase as well as the shape, ori-
entation and the distribution of the voids embedded uniformly in
the matrix phase. For simplicity, we will also consider that the

shape and orientation of the distribution function is identical to
the shape and orientation of the voids themselves (see Danas
and Ponte Castañeda, 2009a). However, this analysis can be readily
extended to distribution of a different shape and orientation than
the voids (Ponte Castañeda, 1995; Kailasam and Ponte Castañeda,
1998). Thus, as shown in Fig. 1, the internal variables characteriz-
ing the state of the microstructure are:

� The porosity or volume fraction of the voids f ¼ V2=V , where
V ¼ V1 þ V2 is the total volume, with V1 and V2 being the vol-
ume occupied by the matrix and the vacuous phase,
respectively.
� The aspect ratio w ¼ a2=a1, with 2ai i ¼ 1; 2ð Þ denoting the

lengths of the principal axes of the representative elliptical void,
in the plane 1� 2. The cases w ¼ 1 and w – 1 correspond to
voids with circular and elliptical cross-sections, respectively.
� The in-plane orientation unit vectors nðiÞ i ¼ 1; 2ð Þ, defining an

orthonormal basis set, which coincides with the principal axes
of the representative elliptical void. As a consequence of the
2D representation of the microstructure the two orientation
vectors nðiÞ can be easily parameterized in terms of a single
Euler angle, w,

nð1Þ ¼ cos we1 þ sin we2; nð2Þ ¼ � sin we1 þ cos we2:

ð2:1Þ

The above set of the microstructural variables can then be
denoted by the set sa ¼ f ; w; wf g.

2.2. Effective behavior: general considerations

The local constitutive behavior of the matrix phase is character-
ized by an anisotropic, convex stress potential U1 � U while the
stress potential of the porous phase U2 � 0. As a consequence of
the Hill–Mandel lemma (Hill, 1963; Mandel, 1964), the effective

stress potential eU for a porous medium is reduced toeUðr; saÞ ¼ ð1� f Þmin
r2SðrÞ

hUðrÞið1Þ; ð2:2Þ

where

SðrÞ ¼ r;div rð Þ ¼ 0 in X; rn ¼ 0 on @Xð2Þ; hri ¼ r
n o

ð2:3Þ

is the set of statically admissible stresses that are compatible with
the average stress r and a traction free void surface.

Subsequently, the effective strain-rate tensor can be expresses
as

D ¼ @
eU
@r

rð Þ: ð2:4Þ

The above described problem is non-trivial since it involves, in
general, nonlinear constitutive relations for the constituents as
well as random spatial distributions of the voids and thus the goal
of the present work is to propose approximate, albeit robust and
rigorous, homogenized models. In the next sections, we define
the local constitutive response of the single crystal matrix and
we provide both analytical and numerical estimates of the effective
response of such porous single crystals.

2.3. Constitutive behavior of the constituents

Let us consider a reference single crystal which undergoes vis-
coplastic deformation on a set of K preferred crystallographic slip
systems. At this stage, for simplicity in the homogenization proce-
dure elasticity effects are neglected. Then, these systems are
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