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This paper investigates the optimal architecture of planar micro lattice materials for minimum weight
under simultaneous axial and shear stiffness constraints. A well-established structural topology opti-
mization approach is used, where the unit cell is composed of a network of beam elements (Timoshenko
beams are used instead of truss elements to allow modeling of bending-dominated architectures); start-
ing from a dense unit cell initial mesh, the algorithm progressively eliminates inefficient elements and
resizes the essential load-bearing elements, finally converging to an optimal unit cell architecture. This
architecture is repeated in both directions to generate the infinite lattice. Hollow circular cross-sections
are assumed for all elements, although the shape of the cross-section has minimal effect on most optimal
topologies under the linear elasticity assumption made throughout this work. As optimal designs identi-
fied by structural topology optimization algorithms are strongly dependent on initial conditions, a careful
analysis of the effect of mesh connectivity, unit cell aspect ratio and mesh density is conducted. This
study identifies hierarchical lattices that are significantly more efficient than any isotropic lattice (includ-
ing the widely studied triangular, hexagonal and Kagomé lattices) for a wide range of axial and shear stiff-
ness combinations. As isotropy is not always a design requirement (particularly in the context of
sandwich core design, where shear stiffness is generally more important than compressive stiffness), the-
se optimal architectures can outperform any established topology. Extension to 3D lattices is
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straightforward.
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1. Introduction

Metallic cellular materials possess unique combinations of low
weight, high stiffness and strength, and enable substantial energy
absorption at relatively low crushing stress (Evans et al., 2001,
2010). Additionally, when designed with interconnected porosity,
the open volume in the architecture can be exploited for active
cooling or energy storage, providing unique opportunities for mul-
tifunctionality (Valdevit et al., 2006a; Bell et al., 2005). These attri-
butes make metallic cellular solids uniquely suited as cores of
sandwich structures for applications ranging from lightweight
aerospace structures to blast-resistant armors (for both land and
sea vehicles) (Evans et al., 2010; Wadley et al., 2010), and actively
cooled panels for combustor walls of next-generation hypersonic
vehicles (Valdevit et al.,, 2011, 2008). From a mechanical stand-
point, the core of a well-designed sandwich panel needs to possess
excellent shear stiffness and strength (to support the internal shear
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force that develops under transverse loads on the panel) as well as
compressive stiffness and strength along the through-thickness
direction of the panel (to resist indentation under concentrated
transverse loads) (Allen, 1969).

At a given relative density (defined as the mass density of the
cellular medium divided by the mass density of the solid con-
stituent), topologically architected cellular structures (e.g., periodic
architectures) are vastly superior to stochastic foams, by virtue of a
more efficient stress transfer mechanism between the macroscale
and the unit-cell level: when appropriately designed, each unit-cell
element (whether a truss or a shell feature) will largely experience
tension or compression under the applied external loads, with
minimal bending (Evans et al., 2001; Deshpande et al., 2001). This
guarantees full exploitation of the mechanical properties of the
base material, providing the cellular material exceptional mechan-
ical efficiency (in terms of specific stiffness and strength). Over the
past decade, a number of cellular topologies were investigated and
characterized, ranging from truss-like concepts (Deshpande et al.,
2001; Zok et al, 2003, 2004) to prismatic (honeycomb-type)
designs (Valdevit et al., 2004; Zok et al., 2005). Prismatic designs
with the channels in the plane of the sandwich panel (hence
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offering open porosity) can be thought of as two-dimensional
topologies, extruded in the third direction. The most common 2D
topologies are hexagonal, triangular, and Kagomé designs, regular
lattices in which all elements have the same length (Gibson and
Ashby, 1999; Christensen, 1995). The effective mechanical proper-
ties of these simple lattices are readily extracted in analytical form.
Importantly, because of the threefold symmetry, all three designs
are in-plane isotropic.

Although isotropy is a desirable property in a number of appli-
cations, it is not essential (or even advantageous) for the core of a
sandwich panel: appropriately tailoring the anisotropy (e.g., inde-
pendently choosing compressive and shear stiffness and strength)
may in principle result in much more weight efficient designs.
Besides isotropy, the choice of periodic architectures with simple
unit cells and very few length scales was traditionally justified
by manufacturability requirements. Recently, with the develop-
ment and advancement of a plethora of additive manufacturing
techniques (e.g., stereolithography, select laser sintering, direct
metal manufacturing (Gibson et al., 2010), SPPW-based manufac-
turing (Schaedler et al., 2011; Jacobsen et al., 2007)), the ability
to fabricate extremely complex and hierarchical architectures has
been rapidly growing.

In most studies, optimal designs of lightweight cellular materi-
als have been identified by optimizing the geometric parameters of
a predefined lattice-type architecture (Valdevit et al., 2004, 2006b).
Although this technique allows analytical description for appropri-
ately chosen topologies, it relies on the intuition of the designer in
the selection of the lattice topology. Topology optimization pre-
sents a more elegant approach (Cadman et al., 2013). In its classic
continuum form, a unit cell is meshed with finite elements, each of
which can be assigned either of two phases (e.g., solid and void).
The optimizer progressively reassign elements until an optimal
phase distribution is achieved. Design of cellular materials has
been greatly investigated using topology optimization method,
for example, by Sigmund (1995) in design of materials with pre-
scribed mechanical properties, Sigmund and Torquato (1997) in
design of multiphase materials for extreme thermal expansion,
Silva et al. (1997) in design of piezoelectric microstructures,
Dobson and Cox (1999) for design of photonic crystals for band-
gaps, and Sigmund and Jensen (2003) for design of materials and
structures for phononic band-gaps. Further elaborations of this
technique, such as multi-scale optimal design (Liu et al., 2008),
analysis of the effects of boundaries (Yan et al., 2006), and optimal
design of isotropic cellular solids with prescribed effective moduli
and conductivity (Hyun and Torquato, 2002) have been presented.
Recently, more complicated materials systems have been analyzed,
for example functionally graded materials with desired effective
properties (Paulino et al.,, 2009), and materials with prescribed
nonlinear properties (Wang et al., 2014).

Although extremely powerful, continuum topology optimiza-
tion does not guarantee that the optimal topology be a lattice
design. If this is desired, truss-like (or discrete as opposed to con-
tinuum) topology optimization is the ideal approach. Starting from
a dense mesh of lattice members (Dorn et al., 1964) for a unit cell,
truss (or beam)-based topology optimization seeks the best con-
nectivity by removing inefficient elements and resizing the cross-
section of the most efficient ones. See Bendsge and Sigmund
(2003) and Rozvany (1996) for more details on topology optimiza-
tion of truss-like structures. This technique was first applied to the
optimization of effective properties of a cellular medium (inverse
homogenization) in Sigmund (1994); recently, Asadpoure et al.
(2014) extended this approach to integrate the fabrication cost of
lattices in the objective function.

In this context, this article numerically investigates the mini-
mum-density designs of periodic 2D lattices under arbitrary com-
binations of prescribed axial (e.g., compressive) and shear moduli.

Optimal lattice architectures are extracted using a formal struc-
tural topology optimization algorithm, and the stiffnesses of each
design are calculated via the finite element method, utilizing beam
elements to model all lattice members. Given the intense recent
interest in hollow micro-lattices as an architecture that could pro-
vide exceptionally low density and a wide length scale hierarchy
(Schaedler et al., 2011; Valdevit et al., 2013; Maloney et al,,
2013), in all the calculations the cross-section of each lattice mem-
ber is assumed to be circular and hollow. However, because most
optimal designs support loads primarily by axial deformation (as
opposed to bending) of the members, the actual shape of the
cross-section has minimal effect on the results (see Section 3.2).
The article is presented as follows. Section 2 defines the mini-
mum relative density problem with axial and shear elastic con-
straints on a unit cell of the lattice. The unit cell consists of
Timoshenko beam elements with hollow circular cross-section,
whose existence, thickness, and radius are modeled as continuous
design variables, in order to take advantage of gradient-based opti-
mizers. The finite element analysis, including the required bound-
ary conditions for obtaining axial and shear moduli, are presented
in Section 2.2. The sensitivity analysis required for the gradient-
based optimizer is derived in Section 2.3, followed by the details
of the algorithm used for the topology optimization in Section 2.4.
Optimized solutions, compared to the well-known bounds on
isotropic cellular materials and with the most commonly available
2D lattices (triangular, hexagonal and Kagomé designs), are pre-
sented in Section 3. In the same section, the effects of lattice hier-
archy is discussed. Conclusions follow. The appendices include a
mesh sensitivity analysis, discussing the effect of initial mesh den-
sity, domain shape and upper bound on the lattice member radius.

2. The topology optimization problem
2.1. Problem statement

The objective of the optimization is to find the minimum weight
of a two-dimensional periodic lattice material under simultaneous
axial and shear stiffness constraints, i.e. the optimized lattice
maintains a minimum axial stiffness as well as a minimum shear
stiffness. A structural topology optimization algorithm is used.
The unit cell of the lattice is initially seeded with a dense mesh
of structural finite elements; beam elements are used as opposed
to truss elements, in order to allow load carrying by bending rather
than solely by axial deformation. Although optimally designed lat-
tices are almost always statically determinate (and hence carry
load by axial deformation of each member), allowing for bending
deformation might be important for extremely anisotropic designs
where the required axial and shear stiffness are vastly different. As
the optimization procedure progresses, inefficient elements are
eliminated and the cross-sections of the remaining elements are
resized, ultimately converging to the optimal minimum-density
lattice architecture. A binary design variable, x¢, is assigned to each
lattice element to represent its existence (i.e., X2 = 1 if the element
e exists, otherwise x¢ = 0). The need for the introduction of this
additional variable is explained later in this section. The formal
optimization problem on a discretized domain Q (representing a
unit cell or fraction thereof) can be expressed as follows:

. XV (X,
min px) = Y- ST 1)
VeeQ
st. CR(x) < C; (2)
Cox) < C; (3)
. 1 if solid
x*‘{o if void© ¢ €% @



Download English Version:

https://daneshyari.com/en/article/277376

Download Persian Version:

https://daneshyari.com/article/277376

Daneshyari.com


https://daneshyari.com/en/article/277376
https://daneshyari.com/article/277376
https://daneshyari.com

