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a b s t r a c t

A finite element study of the interparticle force–displacement laws on contacts of spheres at conditions
corresponding to compacts pressed to high relative densities is presented here. Under these conditions,
the response of a contact can be affected by the presence of neighboring contacts. Finite element
simulations of axisymmetric models of equispaced and equally loaded contacts show that the force–
displacement law is not unique and depends on the number of neighboring contacts. The force at a given
interparticle deformation is minimum for Z = 2 but at higher coordination numbers becomes larger after a
critical deformation due to the interaction of the stress fields of neighboring contacts. This difference is
magnified when the local porosity closes. Furthermore, numerical simulations of periodic arrays of
spheres were conducted to assess the effect of loading path and the formation of new contacts on the
response of existing contacts. In both cases, it was found that, the contact response depends on the
overall triaxiality of the deformation of the particle. A new deformation fabric tensor is proposed based
on the deformation and direction of all contacts on a particle. The first and second invariants of this
tensor are used to characterize the triaxiality of the deformation on a particle. These results form the
basis for more appropriate force–displacement laws at contacts that can be implemented in discrete ele-
ment simulations for high density problems.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Powder compaction can be modeled by continuum, microme-
chanical or discrete models. The most common constitutive model
used in conjunction with finite element (FEM) analysis is the
Drucker–Prager cap model (Coube and Riedel, 2000; Michrafy
et al., 2002; Sinha et al., 2010; Sinka et al., 2003; Wu et al.,
2005), which combines a Drucker–Prager failure line (Drucker
and Prager, 1952) with a densification cap (DiMaggio and
Sandler, 1971). Micromechanical models incorporate geometric
parameters (i.e., coordination number, contact orientation) that
have a significant effect on the mechanical behavior of the powder
compact (e.g., Arzt, 1982; Fleck, 1995). Two classes of discrete
models have been used: (a) Discrete Element Method (DEM)
(Cundall and Strack, 1979; Heyliger and McMeeking, 2001;
Martin et al., 2003; Redanz and Fleck, 2001; Thornton, 2000) that
treats the compact as an assemblage of particles, which deform
only at the contacts, and (b) multiparticle FEM (MPFEM), which
is based on finite element discretization of particles (Gethin

et al., 2003; Harthong et al., 2012; Procopio and Zavaliangos,
2005). Among these methods, DEM offers arguably the best combi-
nation of insight into particle level mechanisms and computational
efficiency.

In this paper, we examine the force–displacement law govern-
ing the mechanical interaction of inter-particle contacts at large
deformations. This law is the most important aspect of DEM mod-
els and is traditionally considered to be identical for all contacts in
a pressed powder assembly. Contact models such as Hertz’s (Hertz,
1882) and Storakers’ (Storakers et al., 1997) are commonly
assumed to describe the response of all contacts. The scope of this
paper is to provide insight to the mechanical response of particles
at high relative densities where significant interaction between
neighboring contacts occurs, with the long term goal of extending
the applicability of DEM models to that range.

2. Background

The normal force–displacement between elastic spherical parti-
cles, was derived analytically by Hertz (1882). This solution is
based on the assumptions that: (a) a contact formed between
two spheres is approximated by an elastic half-space loaded over
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a small circular area and (b) deformations are small. For plastically
deformed contacts Storakers et al. (1997) developed an analytical
model by extending the solution of Hill et al. (1992) for the inden-
tation of a half-space by a rigid sphere. This is a similarity solution
(Spence, 1968) in the sense that the solution is independent of the
size of the indenter. In other words, velocities and strain rates are
independent of the size of the contact area. Storakers’ solution is
based on the assumption of small deformations and uses a
non-linear elastic material (r = ke1/m, where k and m are a material
constant and the hardening exponent respectively) in lieu of plas-
ticity with the restriction of monotonic loading (e.g., Hutchinson,
1968; Rice and Rosengren, 1968).

Numerical simulations of a compressed row of spheres
(Mesarovic and Fleck, 2000) showed that the Storakers’ model is
only valid during the earliest stages of contact deformation, and
only for a large ratio of Young’s modulus to yield strength
(E/ro > 1000). Mesarovic and Fleck (2000) reported that the
response of two spheres in contact comprises four distinct
regimes: (1) elastic, small-strain, (2) elastoplastic deformation,
(3) similarity (where the similarity solution is correct or close to
the real response), and (4) finite deformation plasticity. They also
stated that the transition between different regimes is affected
by the ratio of the uniaxial yield stress ro to the modulus of
elasticity E, and the ratio of the radii of the contacting particles.

Procopio and Zavaliangos (2005) performed 2D multiparticle
finite elements simulations of compaction and showed that: (1)
the force–displacement law at the contacts of discs is not unique
but depends on the number of contacts formed in the particle
and (2) there is an asymptote in the force–displacement curve that
depends on the contact configuration in the particle and represents
the fully dense limit at which the force tends to infinity for nearly
incompressible particles. In other words there is interaction
between neighboring contacts.

Skrinjar and Larrson (2007) performed 3D finite element
simulations of the compaction of the body centered cubic array
(BCC) and reported that the normal force deviates from the
force developed at a contact formed between two spheres at
moderate contact deformations. The deviation from the response
of two particles in contact was attributed to the formation of
additional contacts in the BCC configuration at the later stages of
compaction.

Gonzalez and Cuitino (2012) developed an elastic model to
address non-local phenomena by invoking the principle of super-
position. They proposed that the displacement at a contact is the
superposition of: (a) the direct effect of the force on that contact,
and (b) the induced from neighboring contacts. The proposed idea
is conceptually interesting as it challenges the uniqueness of the
normal force–displacement law, but its consideration is restricted
to small elastic contact deformations due to the use of the superpo-
sition principle.

To correct the typical deficiency of prior DEM models, which
predict a finite stress at the fully dense limit, Harthong et al.
(2009) developed a heuristic contact model that introduces the
local relative density as an additional parameter in the force–
displacement law. They proposed that the force developed on a
contact should consist of two terms. The first term is associated
with the force developed at a contact between two spheres, while
the second is a singular term that takes into account the particle
incompressibility, and is chosen to tend to infinity when the local
porosity fully closes. This approach necessitates the calculation of
local porosity using Voronoi tessellation.

Of interest to the current work is also the work of Frenning
(2013), who proposed a force–displacement law describing a par-
ticle close to the full density limit. An analytical model was
obtained by approximating the deformed spherical particle with
a truncated sphere of size larger than the initial size of the particle

(which is essentially an idea proposed by Arzt, 1982) and calculat-
ing the average contact pressure based on the volumetric deforma-
tion of the particle. The contact force is assumed to be a function of
a constant parameter H and the contact area. Therefore, for a given
contact area the force is unique. In that work it was also discussed
that the force displacement response is initially affected by the
merging of plastic zones under contacts and finally by the closing
of the pores.

The current study focuses on the inter-particle contact response
up to high relative densities, where the response of a particular
contact is affected by the existence of neighbor contacts. Finite ele-
ment simulations were conducted in order to elucidate the physi-
cal mechanisms that control the contact response under an overall
isostatic pressing. Furthermore, numerical simulations of regular
arrays were conducted to assess the effect of non-isostatic loading
path and the effect of formation of new contacts on the response of
existing contacts.

3. Constitutive model, FEM implementation and dimensionless
analysis of the contact problem

3.1. Axisymmetric finite element mesh

The geometry of a conical sector deforming against a friction-
less rigid wall represents the unit cell of a contact, see Fig. 1(a).
Points on the side of the conical sector are constrained to move
only along this surface. The presence of neighboring contacts is
enforced in a way that represents equispaced and equally loaded
contacts on a spherical particle. Fig. 1(b) shows the definition of
the basis terminology that will be employed throughout the text
(interparticle deformation, contact radius, etc.).

The surface area, S in the undeformed state is a function of the
coordination number, Z:

S ¼ 4pR2

Z
ð1Þ

Fig. 1. (a) Geometric approximation of a contact on a spherical particle with
coordination number Z for which contacts are equispaced and identically loaded (b)
schematic and basic variables (a = contact radius, d = center-to-center distance of
deformed particles, h = particle ‘‘overlap’’, and u = interparticle deformation)
between two spherical particles in contact of radius R. The reference center-to-
center distance L0 is taken at the point that the contact just begins to form.
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