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a b s t r a c t

The effect of low stress triaxiality on ductile failure is investigated for a material subject to pure shear or
to stress states in the vicinity of pure shear. Many recent studies of ductile failure under low hydrostatic
tension have focused on shear with superposed tension, which can result in simple shear or in stress
states near that. A material with a periodic array of voids is subjected to tensile stresses in one direction
and compressive stresses in the transverse direction. Numerical solutions for a plane strain unit cell
model are obtained numerically. For stress states in the vicinity of pure shear it is found that the voids
close up to micro-cracks, and these cracks remain closed during continued deformation, with large com-
pressive stresses acting between crack surfaces. The same type of behaviour is found for different initial
sizes of the voids and for cases where the two types of voids in the unit cell have very different initial size.
The analyses do not indicate a final failure mode where the stress carrying capacity of the material drops
off to zero. In previous analyses for stress states in the vicinity of simple shear such final failure has been
predicted, so it appears that the behaviour of a porous ductile material at low stress triaxiality depends a
great deal on the mode of deformation.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Under relatively high hydrostatic tension micro-voids con-
tained in a ductile material will tend to grow large during plastic
deformation, and ductile failure will occur by coalescence of neigh-
bouring voids (see reviews by Garrison and Moody, 1987;
Tvergaard, 1990; Benzerga and Leblond, 2010). However, recently
there has been increasing interest in the behaviour of voids under
low stress triaxiality. Barsoum and Faleskog (2007a) have carried
out full 3D analyses for shear specimens containing spherical voids
in order to model their experiments (Barsoum and Faleskog,
2007b) on ductile fracture in a double notched tube specimen load-
ed in combined tension and torsion. In a number of plane strain
cell model analyses for a material containing a periodic array of cir-
cular cylindrical voids Tvergaard (2008, 2009, 2012) and Dahl et al.
(2012) have shown that in stress states similar to simple shear the
voids are flattened out to micro-cracks, which rotate and elongate
until interaction with neighbouring micro-cracks gives coales-
cence, and this mechanism has also been found in 3D for initially
spherical voids (Nielsen et al., 2012). Thus, under high stress tri-
axiality the void volume fraction increases until ductile fracture
occurs, whereas the void volume fraction disappears under low

stress triaxiality, as the voids become micro-cracks. In analyses
of cases where micro-cracks form it is important to account for
the contact between crack surfaces.

An extension of the Gurson model has been proposed by
Nahshon and Hutchinson (2008) to be able to describe failure in
simple shear where the hydrostatic tension is zero. In this extend-
ed model the damage parameter is no longer a geometrically well
defined void volume fraction, so this aspect of the model is more
like continuum damage mechanics. Tvergaard and Nielsen (2010)
have compared predictions of this shear-extended Gurson model
with predictions of the micro-mechanical studies (Tvergaard,
2009) and have found that the trends of the predictions are in good
agreement.

A number of recent experimental investigations have consid-
ered ductile fracture in shear at a stress triaxiality near zero. Thus,
Bao and Wierzbicki (2004), Beese et al. (2010) and Dunand and
Mohr (2011), for two different aluminium alloys and a TRIP steel,
have used special butterfly specimens to study the effect of the
stress triaxiality and of the Lode angle in stress states dominated
by shear. Haltom et al. (2013) have used a tubular specimen in ten-
sion–torsion while Ghahremaninezhad and Ravi-Chandar (2013)
have used a modified Arcan test to study the same Al 6061-T3.

In the investigations mentioned above it is characteristic that
plastic deformations under low hydrostatic tension are studied
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under shear loading. When the hydrostatic tension is precisely
zero, this mode of deformation is called simple shear. However,
deformation under low stress triaxiality can also be applied by
subjecting the material to tensile loading in a fixed direction, while
compressive loading is applied in the transverse direction. Then
material lines along these two loading directions do not at all
rotate during the plastic deformations. When the hydrostatic ten-
sion is precisely zero, this mode of deformation is called pure
shear.

In the present paper a material containing a periodic array of
voids is studied under tension in one fixed direction and compres-
sion in the transverse direction, so that the modes of deformation
considered are either pure shear or in the vicinity of pure shear.
The material response is analysed by numerical solutions for a
characteristic unit cell model. The main purpose here is to investi-
gate whether or not ductile failure is predicted in these stress
states similar to pure shear, analogous to the predictions for stress
states similar to simple shear, where the voids are flattened out to
micro-cracks, which elongate until interaction with neighbouring
micro-cracks gives coalescence.

2. Problem formulation and numerical procedure

The material to be considered here (Fig. 1) has a periodic array
of voids, with the initial spacing A0 in the x1-direction and the ini-
tial spacing B0 in the x2-direction. Plane strain conditions are
assumed. The voids are initially circular cylindrical and staggered,
with the radii R01 and R02, respectively, so that the voids are located
in opposite corners of the rectangular unit cell in Fig. 1. Finite
strains are accounted for and the analyses are based on a convected
coordinate Lagrangian formulation of the field equations, with a
Cartesian xi coordinate system used as reference and with the
displacement components on reference base vectors denoted by
ui. The metric tensors in the reference configuration and the cur-
rent configuration, respectively, are gij and Gij with determinants
g and G, and gij = 1/2(Gij � gij) is the Lagrangian strain tensor. In
terms of the displacement components ui on the reference base
vectors the Lagrangian strain tensor is

gij ¼
1
2

ui;j þ uj;i þ uk
;iuk;j

� �
ð1Þ

where ð Þ;j denotes covariant differentiation in the reference frame.
The contravariant components sij of the Kirchhoff stress tensor on
the current base vectors are related to the components of the Cau-
chy stress tensor rij by sij ¼

ffiffiffiffiffiffiffiffiffi
G=g

p
rij. A finite strain formulation for

a J2 flow theory material with the Mises yield surface is applied,
where the incremental stress–strain relationship takes the form
_sij ¼ Lijk‘ _gk‘, with the instantaneous moduli specified in

(Hutchinson, 1973; Tvergaard, 1976). The true stress-logarithmic
strain curve in uniaxial tension is taken to follow the power law

e ¼
r=E; r 6 rY

ðrY=EÞðr=rYÞ1=N
; r P rY

(
ð2Þ

with Young’s modulus E, the initial yield stress rY and the power
hardening exponent N. Poisson’s ratio is m.

The material is subjected to tensile loading in the x2-direction,
such that average true stress R22 in the vertical direction is a prin-
cipal stress. Thus, also the average true stress R11 in the x1-direc-
tion is a principal stress. The numerical calculations are carried
out such that a fixed stress ratio is prescribed

R11=R22 ¼ j ð3Þ

and in most cases the value of the constant j is prescribed as nega-
tive (where the value �1 corresponds to pure shear). With the
assumed symmetries of the material geometry and with the loading
applied in the vertical and horizontal directions the material lines
along the coordinate axes will remain straight throughout the
deformation. Thus, the boundary conditions to be satisfied along
all four edges of the rectangular unit cell are standard symmetry
conditions. The average logarithmic strains in the two coordinate
directions are denoted e1 and e2, respectively.

When the hydrostatic tension is sufficiently low in the present
computations, the voids are going to close up to form micro-cracks,
so that contact conditions are needed for the points on the void
surface. For each nodal point on the void surface the displacements
are checked relative to the location of the edge lines crossing the
void. If the displacements exceed such a symmetry line, this sur-
face point overlaps with the symmetrically located surface point
in the neighbouring unit cell, and this marks the onset of surface
contact at that particular nodal point. From then on the displace-
ment normal to the edge of the unit cell is prescribed to be equal
to that of the edge line. Subsequently, when contact has been
established in a nodal point on the void surface, the value of the
compressive nodal force on the symmetry plane is checked, and
if this force becomes tensile, the contact is released, so that the
void can start opening up again. Friction during contact is not an
issue here, as the symmetry line through each void means, that
there is no sliding between the void surfaces.

It is noted that initially computations have been carried for only
half the unit cell, i.e. a cell with the length A0/2 in the x1-direction
and the height B0 in the x2-direction, containing only part of one
void. However, the staggered void arrangement in Fig. 1 has been
preferred, since this promotes interaction between the voids by a
region of intense shear strains, and this also allows for considering
different size voids.

The numerical solutions for the fields inside the unit cell are
obtained by a linear incremental solution procedure, based on
the incremental principle of virtual work. On the void surfaces zero
nominal tractions are specified, until contact occurs as described
above. The displacement fields are approximated in terms of
8-noded isoparametric elements, and volume integrals in the prin-
ciple of virtual work are carried out by using 2 � 2 point Gauss
integration within each element. An example of a mesh used for
some of the numerical analyses is shown in Fig. 1.

In each increment an increasing average strain e2 is prescribed
in the vertical direction, and the increment of the transverse strain
is calculated such that the prescribed stress ratio (3) remains sat-
isfied. This is carried out by using a Rayleigh Ritz-finite element
method (Tvergaard, 1976).

Remeshing is used a few times in each computation to avoid
severe mesh distortion. The remeshing procedure applied was first
introduced in one of the authors finite strain programmes by
Pedersen (1998), and has been further developed in (Tvergaard,

Fig. 1. A unit cell used to analyse a material with a periodic array of circular
cylindrical voids. Example of an initial mesh is shown for a case with B0=A0 ¼ 0:6,
R01=A0 ¼ 0:125 and R02=A0 ¼ 0:25.
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