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a b s t r a c t

The damage of a planar, elastic and initially isotropic material is considered in the framework of a clas-
sical approach where the damaged elasticity tensor is ruled by a fourth-rank symmetric damage tensor.
The analysis is completely carried on using the so-called polar method for the invariant representation of
tensors in R2. The final elastic behavior, induced by damage, can be anisotropic: all the possible situations
of elastic symmetries are considered, and for each one an analytical expression for the bounds on the
invariants of the damaged elastic tensor and of the damage tensor is given. An admissible domain for
the damage invariants and for the damaged elastic invariants is so provided, the convexity of these
domains is also proved.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

We consider in this paper the anisotropy induced by damage on
an initially isotropic layer. The goal is twofold: first, if the elastic
tensor of the virgin material is C, determine which is the final ten-

sor eC. Then, to give explicit bounds for the elastic moduli of eC and
for the characteristics of the damage tensor D. To this purpose, we
define the damage tensor D as a fourth-rank tensor with minor and

major tensor symmetries, such that the elastic tensor eC of the
damaged material linearly depends upon C and D, Chaboche,
1978; Chaboche, 1979; Leckie and Onat, 1980; Sidoroff, 1980;
Chow, 1987; Lemaitre et al., 2009:

eC ¼ ð1�DÞC½ �Sym ) eC ¼ C� bC with bC ¼ CDþDC

2
: ð1Þ

The elastic tensor C of the virgin material and the damaged elastic

tensor eC must be positive definite, as a consequence of the positive-
ness of the elastic potential. In a thermodynamical framework, the

positive semi-definiteness of the loss of stiffness tensor bC is equiva-
lent to a positive intrinsic dissipation due to linear elasticity-
damage coupling (more details are given in Section 4 and Appendix
B). The damage tensor D is assumed to be positive semi-definite.

The conditions of positive semi-definiteness for D and bC and

positive definiteness for eC provide the conditions to determine
the bounds on the values of their moduli, once those on C known.
The problem of whether some of these conditions are more restric-
tive than the others will be solved in the present work, by showing

that the positive semi-definiteness of bC always implies the positive
semi-definiteness of D, and is even equivalent in some particular
cases related to the induced anisotropy by damage.

To investigate this problem, we make use of the so-called polar
formalism (Verchery, 1979; Vannucci, 2005). This method gives a
representation of elasticity based upon tensor invariants and the
different elastic symmetries are readily identified by the values
taken by some of these invariants.

We obtain the polar invariants of eC as functions of those of C

and D; while we assume that the initial material is isotropic, we
consider all the possible transformations for the damaged material,
leading to a final elastic behavior that can be completely anisotrop-
ic, orthotropic, specially orthotropic or also isotropic.

Then, we pass to consider the bounds that damage process

impose to the polar moduli of D and eC; starting from the simpler

case, that of an isotropic tensor eC, we consider all the possible cas-

es of elastic symmetries for eC, until the most general case of com-
plete anisotropy. We give an explicit expression for these bounds
and show that the admissible domain for the moduli is convex in
all the cases, in some of them a graphical representation is also
possible.
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2. Essentials of the polar formalism

In this section, we briefly recall the essentials, for the present
paper, of the polar formalism. The polar method is basically a
mathematical method to search for a complete set of the invariants
of a given tensor in R2. As such, it can be applied not only to elas-
ticity tensors, but also to any other plane tensor, see for instance
Vannucci (2007) or Vannucci and Verchery (2010). The polar for-
malism is based upon a complex variable method, a technique once
widely used in physical mathematics and which has its initiators in
the pioneer works of Michell (1902) and Kolosov (1909) and which
finds its completion in the treatises of Muskhelishvili (1953), Green
and Zerna (1954) and Milne-Thomson (1960). As a consequence,
the polar formalism can be applied only to plane problems.

Verchery makes use, just like Green and Zerna, of a complex
variable transformation, interpreted as a change of frame; this
transformation has some algebraic properties that allows simplify-
ing the expressions of frame rotations and symmetries, which ren-
ders rather easy the search for tensor invariants. The mathematical
details and passages, rather technical and not to be detailed here,
can be found in Vannucci (2005) and Vannucci and Verchery
(2010), whereto the interested reader is addressed for a complete
explanation of the method.

Here, we recall just the main features of the polar method for a
plane fourth-rank tensor T owing the minor and major tensor sym-
metries, i.e. such that 8i; j; k; l ¼ 1;2,

Tijkl ¼ Tjikl ¼ Tijlk;

Tijkl ¼ Tklij:
ð2Þ

Five invariants suffice to completely describe T, because in any
frame it is completely described by six quantities. Among them,
one is needed to fix a frame, so the remaining five ones can be
reduced to independent tensor invariants. In the polar formalism,
four of these invariants are elastic moduli and are indicated by
the symbols T0; T1;R0 and R1; the last invariant is the angular dif-
ference U0 �U1. One of the two angles, U0 or U1, may be arbitrarily
chosen to fixe a reference frame (the most usual choice is U1 ¼ 0).

The basic result of the polar formalism is the expression of the
Cartesian components of T in terms of the polar parameters, in a
frame rotated through an angle h:

T1111ðhÞ ¼ T0 þ 2T1 þ R0 cos 4 U0 � hð Þ þ 4R1 cos 2 U1 � hð Þ;
T1112ðhÞ ¼ R0 sin 4 U0 � hð Þ þ 2R1 sin 2 U1 � hð Þ;
T1122ðhÞ ¼ �T0 þ 2T1 � R0 cos 4 U0 � hð Þ;
T1212ðhÞ ¼ T0 � R0 cos 4 U0 � hð Þ;
T1222ðhÞ ¼ �R0 sin 4 U0 � hð Þ þ 2R1 sin 2 U1 � hð Þ;
T2222ðhÞ ¼ T0 þ 2T1 þ R0 cos 4 U0 � hð Þ � 4R1 cos 2 U1 � hð Þ:

ð3Þ

The above relations show that T0 and T1 are the isotropy invari-
ants, while anisotropy is described by the invariants R0;R1 and
U0 �U1. In particular, it is easy to recognize that for isotropic
elasticity,

T0 ¼ G; T1 ¼
1
2
j; ð4Þ

where G and j are respectively the shear and bulk moduli. The same
physical meaning is preserved also for all the anisotropic cases, so
we can consider T0 and T1 as a generalization, to any elastic
behavior, of the shear and bulk moduli, respectively. We remark
also that

T0 þ 2T1 ¼ Gþ j; ð5Þ

a quantity often appearing in the following.
The relations giving the polar components as functions of the

Cartesian ones can be obtained inverting Eqs. (3):

8T0 ¼ T1111ðhÞ � 2T1122ðhÞ þ 4T1212ðhÞ þ T2222ðhÞ;
8T1 ¼ T1111ðhÞ þ 2T1122ðhÞ þ T2222ðhÞ;
8R0e4iðU0�hÞ ¼ T1111ðhÞ � 2T1122ðhÞ � 4T1212ðhÞ

þ T2222ðhÞ þ þ4i½T1112ðhÞ � T1222ðhÞ�;
8R1e2iðU1�hÞ ¼ T1111ðhÞ � T2222ðhÞ þ 2i½T1112ðhÞ þ T1222ðhÞ�:

ð6Þ

Denoting by lower-case letters the polar parameters of
T�1, it is:

t0 ¼
2
D

T0T1 � R2
1

� �
;

t1 ¼
1

2D
T2

0 � R2
0

� �
;

r0e4iu0 ¼ 2
D

R2
1e4iU1 � T1R0e4iU0

� �
;

r1e2iu1 ¼ � 1
D

R1e2iU1 T0 � R0e4iðU0�U1Þ
� �

;

ð7Þ

with

D ¼ 8T1 T2
0 � R2

0

� �
� 16R2

1 T0 � R0 cos 4 U0 �U1ð Þ½ �: ð8Þ

There is a close relation between the polar invariants and elastic
symmetries. In particular, the polar analysis of elastic symmetries
let appear an algebraic characterization of the elastic symmetries,
for some aspects more powerful than the classical geometrical
characterization using the symmetry of the elastic properties
linked to a subjacent symmetric distribution of the matter. In fact,
special values taken by one ore two invariants determine an elastic
symmetry, and these particular values affect and characterize the
properties of the matter. Upon this consideration, it can be shown
that there are five different and non equivalent types of planar
elastic symmetries:

� ordinary orthotropy: it corresponds to the condition

U0 �U1 ¼ K
p
4
; K 2 f0;1g; ð9Þ

As a consequence, it is possible to have, for the same set of
invariant polar moduli T0; T1;R0 and R1, two different orthotropic
materials, one with K ¼ 0, the other one with K ¼ 1, whose prop-
erties are quite different. These two types of ordinary orthotrop-
ic materials correspond to those termed by Pedersen (1989) as
low, K ¼ 0, and high, K ¼ 1, shear modulus orthotropy. The
results obtained by Vannucci (2009), Vincenti and Desmorat
(2011), Catapano et al. (2012) and Barsotti and Vannucci
(2013) suggest that such a classification is rather restrictive:
the differences between these two classes are not limited to
shear, but rather concern the overall mechanical response of
the material. This can be observed also for the effects of damage,
as it will be clear in the following of this paper;
� R0-orthotropy:

R0 ¼ 0; ð10Þ

in this case, the Cartesian components of T are either constant or
change, after a rotation, as those of a second- and not of a fourth-
rank tensor, Vannucci (2002); the existence of this special case
of orthotropy has been successively found also in R3, Forte
(2005); a sufficient condition for having R0-orthotropy is to
strengthen (or weaken) an isotropic layer by fibers (cracks) that
are shifted of p=4;
� r0-orthotropy:

r0 ¼ 0; ð11Þ

as Eq. (73) clearly shows, condition (10) does not imply the same
result for T�1 : R0-orthotropy does not concern the inverse
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