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a b s t r a c t

In this contribution the theory of configurational forces is applied to a viscoplastic material model with
plastic slip in the basal and prismatic slip systems of an hcp crystal structure. Thereby the derivation of
the configurational force balance is related to a translational invariance of the underlying energetics. The
computation of configurational forces in this dissipative media requires the computation of gradients of
the internal variables. In the context of the finite element method, this usually requires a projection of
integration point data to the global mesh nodes. Alternatively, the gradients can be computed using a
rather unknown subelement technique. The numerical accuracy of the different methods is qualitatively
and quantitatively analyzed from a configurational force point of view. In a final example, the influence of
the crystal orientation and plastic slip in multiple slip systems on the loading of a mode I crack is dis-
cussed with the help of the computed configurational forces. Furthermore, the influence of hardening
is considered in this scenario.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of configurational forces has previously been used to
compute driving forces on defects, see for example the review in
Gross et al. (2003) and the literature cited in there. The application
of configurational forces to fracture has been pursued in many
publications, see for example Steinmann (2000), Steinmann et al.
(2001), Mueller et al. (2002), Kolling et al. (2002), Näser et al.
(2007), Miehe et al. (2007) and Gürses and Miehe (2009). The con-
cept has also received attention in the computational mechanics
community. Details on the implementation of configurational
forces in the context of the finite element method can be found
in Gürses and Miehe (2009), Mueller and Maugin (2002), Gross
et al. (2002), Mueller et al. (2004), Thoutireddy and Ortiz (2004),
Kolling and Mueller (2005) and Miehe and Gürses (2007). These
works include r- and h-adaptive strategies, based on the numerical
error indicated by configurational forces. The basics of the mainly
elastic origin of the theory of configurational forces can be found
in Kienzler and Herrmann (2000), Gurtin (2000) and Maugin
(1993) and the recent publication (Maugin, 2010). These works
pick up the ideas that where already addressed in the seminal
works by Eshelby (1951) and Eshelby (1970).

The extension of the theory to inelastic processes, together with
a numerical application of fracture mechanics, can be found in the
contributions (Menzel et al., 2004; Nguyen et al., 2005; Näser et al.,
2007; Simha et al., 2008). The results of the present investigation
are in agreement with Menzel et al. (2004), Nguyen et al. (2005)
and Näser et al. (2007). However, we will provide a different deri-
vation of the configurational force balance in conjunction with a
more detailed analysis of possible numerical strategies.

Micro- and ultra-precision machining are rapidly growing areas
of research. At the micro level, cutting processes combine a high
geometric variability with comparatively high material removal
rate. In contrast to conventional cutting processes, effects such as
the size ratio between the tool and the microstructure of the work-
piece material need to be considered. Known material models from
conventional cutting can be applied only up to a certain extent to
the areas of micro and ultra-precision machining. These models
usually do not take the anisotropic properties of the materials into
account. These are, however, necessary to describe the surface
morphology and its characteristic effects. A good example for this
is the spring back effect as illustrated in Fig. 1.

In order to make the theory and its numerical implementation
applicable to micro- and ultra-precision machining processes, frac-
ture mechanical scenarios are analyzed. Besides the anisotropic
elastic response, the plastic deformation in the individual slip
systems must be considered. In a first approach attention is given
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to the hcp-crystal structure and a viscoplastic material model is
used, that takes slip in the basal and prismatic slip systems into
account. The individual slip system experiences hardening due to
the slip in its own (self hardening) and other slip systems (latent
hardening). For the sake of simplicity the hardening is considered
to be linear. For a more elaborate material law of hcp-titanium
including length scale effects the reader is referred to Dunne
et al. (2007).

The main focus of the present investigation is to provide an
algorithmic setting for the treatment of the configurational force
balance. In this regard, different computational strategies are real-
ized, compared and discussed. The intention of this investigation is
not the exact modeling of the material response, but rather the
configurational framework of crystal plasticity in conjunction with
a proper numerical treatment, that is especially suited for inhomo-
geneous problems, as are encountered in micro cutting of poly-
crystalline materials. Furthermore, in a first step we focus on a
small strain setting and stationary cracks (cuts). The extension of
the theory to applications with large deformations is more or less
straightforward.

2. Modeling in physical space – crystal plasticity

In the bulk the equilibrium condition is given by the relation

divrþ f ¼ 0; ð1Þ

where r is the Cauchy stress tensor, f represents volume forces, and
the divergence operator is denoted by div. In index notation for
Cartesian coordinates the equilibrium condition (1) reads
rij;j þ f i ¼ 0, where Einstein’s summation convention over repeated
indices is utilized. The kinematics in the small strain limit are gov-
erned by the following linear and symmetric relation between the
infinitesimal strain tensor e and the displacement u:

e ¼ 1
2
ruþ ðruÞT
� �

: ð2Þ

The r operator is used to indicate the gradient with respect to the
spatial coordinates x. The system of equations can be solved under
appropriate boundary conditions, if the constitutive equations are
provided. In the later application and the numerical examples, a
crystal plastic behavior is considered, including viscoplastic effects
with latent hardening. The stress response is given by Hooke’s law:

r ¼ C e� epð Þ; ð3Þ

where C is the fourth order stiffness tensor and ep represents the
plastic strain. In a crystal plastic setting, the plastic strain is con-
structed from the slip cðkÞ in the kth slip systems, via

ep ¼
X

k

cðkÞPðkÞ; where PðkÞ ¼ 1
2

sðkÞ � nðkÞ þ nðkÞ � sðkÞ
� �

: ð4Þ

In the above relation the projector PðkÞ is formed by the slip
direction sðkÞ of, and the normal nðkÞ to the kth slip system. The
symbol � represents the dyadic product between two vectors.
The projector is used to compute the Schmid stress (Schmid and
Boas, 1941) in the kth slip system by the projection

sðkÞ ¼ PðkÞ : r ¼ r : PðkÞ; ð5Þ

where : indicates the scalar product between two second order ten-
sors. In this investigation, the crystal structure of hcp-titanium is
considered. The first 3 slip systems are the basal slip systems, while
slip systems 4 to 6 are the prismatic slip systems. The secondary
pyramidal slip systems are not taken into account here. For a sketch
of the crystal structure in conjunction with the considered slip sys-
tems, see Fig. 2.

In order to simulate the time dependent material response, evo-
lution equations for the plastic slip cðkÞ and the hardening of each
slip system aðkÞ have to be provided. The following set of evolution
equations is proposed:

_cðkÞ ¼ 1
g
hjsðkÞj � sðkÞy isgnðsðkÞÞ; ð6Þ

sðkÞy ¼ sðkÞ0 þ sðkÞh ; ð7Þ

sðkÞh ¼
X

l

HðklÞaðlÞ; ð8Þ

_aðkÞ ¼ j _cðkÞj: ð9Þ

In the flow rule (6) the symbol h�i represents the Macauley brackets,
and g the viscosity, while in (7) sðkÞ0 is the initial yield stress in the
kth slip system. The hardening is described in (8) by the hardening
matrix HðklÞ, which allows for the consideration of latent hardening.
This completes the material description. The model is still rather
simple, but incorporates the important features, such as the crystal
orientation, its influence on the evolution of the plastic deforma-
tion, and hardening.

The material law is implemented in a finite element scheme at
integration (Gauß) point level. The time integration is done in an
implicit manner by a Euler backwards scheme in conjunction with
a predictor corrector method, as it is classically done in plasticity.
The only subtlety that has to be considered is the changing number
of slip systems identified as active in the predictor step, see e.g.
Simo et al. (1988). As the implementation of the material law is
not in the focus of this investigation, where we want to concentrate

Fig. 1. Process conditions with respect to the microstructure of the workpiece in micro- and ultra-precision cutting.
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