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One dimensional (1D) and two dimensional (2D) magneto-elastic lattices are investigated as examples of
multistable, periodic structures with adaptive wave propagation properties. Lumped-parameter lattices
with embedded permanent magnets are modeled as point magnetic dipole moments, while elastic inter-
actions are described as axial and torsional springs. The equilibrium configurations for the lattices are
identified through minimization of the lattice potential energy. Bloch wave analysis is then conducted
for small perturbations about stable equilibria to predict corresponding wave propagation properties.
Finally, nonlinear dynamic simulations validate the findings of the linearized unit cell analysis, and illus-
trate the changes in dynamic behavior caused by topological transitions. Case studies for 1D systems
show how pass bands and bandgaps are defined by lattice reconfigurations and by changes in lattice mag-
netization. In 2D systems, hexagonal lattices transition from regular honeycombs to re-entrant ones,
which leads to significant changes in wave speeds, and directionality of wave motion and transition
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1. Introduction

Periodic cellular structures and lattices are at the object of
intense research because of their often advantageous stiffness-to-
weight ratios (Schaedler et al., 2013). These structural assemblies
not only make an efficient use of material, but are also characterized
by interesting dynamic and wave propagation properties. For exam-
ple, periodic lattices exhibit dispersive behavior, causing different
frequency waves to travel at different speeds through the lattice,
and are characterized by the occurrence of related “wave beaming”
phenomena (Ruzzene et al., 2003). Bandgaps can also occur that pre-
vent waves at certain frequencies to propagate through the system.
The aforesaid wave properties are highly dependent on lattice topol-
ogy as well as stiffness and mass distributions. In the context of this
paper, the word “topology” refers to the geometric configuration of a
periodic lattice. Changing the topology and stiffness/mass distribu-
tion within a lattice therefore provides the means of tailoring and
controlling wave motion and the subsequent onset of vibrations.
Wave propagation control finds application in methods for isolation
of vibrations in rotating machinery (Olson et al., 2014), for the
protection of important locations (such as the brain) from waves
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resulting from blasts and impacts through their steering and redi-
rection (Barsoum, 2011), for the harvesting of mechanical energy
and its conversion for power generation by forming wave lenses
and reflectors (Carrara et al., 2012), or for the processing of acoustic
wave signals (Vasseur et al., 2011).

The topological dependence of wave motion in a lattice has
been extensively investigated. For example, differences of in-plane
wave propagation between hexagonal and re-entrant lattices were
investigated in Gonella and Ruzzene (2008). Similarly, the volume
fraction and skewness of rhombic grid lattices were shown to
greatly affect wave speed and directionality in Casadei and
Rimoli (2013). As structures transition from near-continuum to
beam lattices, wave beaming is a prominent phenomena that
arises. Furthermore, increasing the skewness of the lattice affects
the direction in which beaming occurs. Rotation of lattice compo-
nents can be exploited to tune bandgaps in a reversible way
(Bertoldi and Boyce, 2008; Goffaux and Vigneron, 2001; Li et al.,
2003). Specifically, in Bertoldi and Boyce (2008) the topology of a
highly deformable 2D structure changes as it buckles under a com-
pressive load. Periodic 2D systems of high-density rectangular
inclusions in a fluid are investigated in Goffaux and Vigneron
(2001) and Li et al. (2003), where the rotation of the high-density
inclusions is the mechanism used to tune bandgaps.

All of the aforementioned studies demonstrate that large
changes in wave propagation can be induced by changing lattice
topology. The concept of adapting the mechanical wave properties
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of a structure through topology reconfiguration is of interest
(Bertoldi and Boyce, 2008; Goffaux and Vigneron, 2001; Li et al.,
2003), as it leads to the design of components with adaptive
dynamic behavior. In this context, self-stable topologies featuring
multiple equilibrium configurations are of particular interest.
Structures exhibiting more than one self-stable topology allow
switching between operational modes associated with different
dispersion, bandgap, and beaming properties (i.e. wave propaga-
tion properties), without the need for the continued application
of an external control action. Such topological reconfiguration
may allow, for example, a filter that can switch between two oper-
ational frequencies, or one structure that can turn a function on
and off. Previous studies of relevance include the work of
Vasseur et al. (2011), which provides a good example of how
changes in stiffness (or elastic moduli) of magnetostrictive materi-
als can be used to affect wave motion. Another tunable magneto-
elastic system consists of magnetostrictive particles immersed in
an elastic medium, as investigated in Yin et al. (2006). Analogous
topology and stiffness changes are applied in reconfigurable elec-
tromagnetic wave filters, as illustrated for example in Park et al.
(2005) and Karim et al. (2006). These devices reconfigure their cir-
cuit geometry through the activation of electrical switches, allow-
ing a change in the frequencies that can propagate. The periodic
structure presented in Karim et al. (2006) uses PIN diodes as
switches to turn the propagation of an electromagnetic wave on
or off. Also, the devices in Park et al. (2005) reconfigure through
the actuation of micro-mechanical switches, adjusting the geome-
try of the electromagnetic device to toggle the operational fre-
quency of low-pass and band-pass filters.

Magneto-elastic systems generally have the ability to be multi-
stable and self-stable (Moon and Holmes, 1979; Harne and Wang,
2013). This makes them good candidates for the design of periodic
lattices with topologies that can be toggled (Lapine et al., 2011).
Drastic topological changes in a magneto-elastic lattice are demon-
strated experimentally in Tipton et al. (2012), where topological
transformations similar to those in Bertoldi et al. (2008) are pro-
duced through the application of a magnetic field instead of a com-
pressive force. The magneto-elastic lattice in Tipton et al. (2012)
requires the application of a magnetic field to remain in the trans-
formed state, and does not directly exploit the multistable nature
of magneto-elastic lattices. This is the main objective of the present
paper, which investigates how multistability associated with mag-
neto-elastic interactions can be exploited for affecting the wave
propagation properties of 1D and 2D magneto-elastic lattices.

The paper is organized as follows. Following this introduction, a
general description of periodic lattices and a phenomenological
modeling approach is discussed in Section 2. The approach leads
to a relatively simple, lumped parameter framework that lends
itself to a series of parametric investigations conducted herein. Next
the methodology for the study of periodic lattices is discussed in
Section 3. This includes the identification of equilibrium configura-
tions (Section 3.2), and the determination of wave propagation
using Bloch wave analysis (Section 3.3). Then, results for 1D and
2D structures, presented in Sections 4 and 5 respectively, show
the effects that topological changes and lattice magnetization
changes have on the propagation of waves. Finally, Section 6 sum-
marizes the main findings of this study and provides recommenda-
tions for future investigations.

2. Theoretical background

2.1. Lattice configuration

Magneto-elastic lattices are modeled as systems of permanent
magnetic particles with translational and rotational degrees of

freedom. Axial and torsional springs connect the particles to form
an elastic structure. The particles have a finite radius rp, and fea-
ture both translational and rotational inertias (Fig. 1(a)). All parti-
cles are identical in terms of their inertial and magnetic properties.
Similarly, all springs connecting the particles are massless and fea-
ture the same axial and torsional stiffness. The interactions
between particles are governed by: (1) magnetic interactions, (2)
elastic interactions through axial and torsional springs, and (3)
axial and torsional viscous damping interactions. The energy func-
tionals associated with the interactions above and the particle’s
degrees of freedom (DOF) are described in the following section.

2.2. Energy functionals

The behavior of the generic ith particle of a 2D lattice is
described by the position of its center of mass r; = x;i + y;j, and
by a rotation angle 0; (Fig. 1(b)). Accordingly, the vector of the gen-
eralized coordinates associated with the ith particle is given by:

q; = [x;, yi, ' M
The kinetic energy of each particle is expressed as:
1. . 1.
Ti= gm( +7) + 5 1F @
where [ = Jmr}.
2.2.1. Mechanical interactions

The strain energy associated with the elastic interactions is
defined in terms of axial and torsional contributions. A phenome-
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Fig. 1. Schematic of mechanical connectivity between two adjacent particles (a),
and particle degrees of freedom (b).
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