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a b s t r a c t

The coupling between solid state diffusion and mechanical stress arises in a number of important tech-
nological applications. The theory that describes such coupling is termed chemo-elasticity. In this paper,
a solution approach is developed for two-dimensional chemo-elasticity problems. First, a coupled system
of nonlinear partial differential equations is derived in terms of an Airy stress function and the solute
concentration. Then, this coupled system of nonlinear equations is solved asymptotically using a pertur-
bation technique. Finally, based on this approach, asymptotic solutions are obtained for three fundamen-
tal problems in two-dimensional chemo-elasticity, namely, a circular hole in an infinite plate under
uniaxial tension, a straight edge dislocation and a disclination.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, chemo-elasticity refers to the coupled theory of
solid state diffusion and deformation in elastic solids. It deals with
the thermodynamics of mechanically stressed solids that may
change their composition through either solute redistribution
within the solids, or mass exchange with the surrounding environ-
ment. Chemo-elasticity problems may arise in a number of techno-
logical areas including ionic solids in fuel cells (Swaminathan et al.,
2007a,b), intercalation in batteries (Burch and Bazant, 2009; Bai
et al., 2011; Cogswell and Bazant, 2012; Cui et al., 2012a,b,
2013a,b), and the growth of porous biogenic single crystals
(Kienzler et al., 2006; Fratzl et al., 2010), just to name a few. In these
applications, the solute is driven into or out of a host solid by various
(electro-) chemical and mechanical deriving forces. A free-standing
stress-free material element may expand (or shrink) to accommo-
date the solute insertion or extraction. However, such volumetric
change may be restricted by either the surround materials or by
the mechanical constraint imposed by the boundary conditions.
Restriction to the composition-induced volumetric change will lead
to mechanical stress in the solid. On the other hand, the stresses in
the solid may affect solute diffusion in the solid. For instance, in thin
film electrodes deposited on a substrate, the volumetric changes are
restricted by the underlying current collector (Graetz et al., 2004). In
the biomimetic growth of porous single crystals, cavities form and
grow to accommodate significant volume reduction caused by
crystallization of the amorphous precursor. However, formation of

cavities gives rise to stress concentration and could increase the risk
of failure (Fratzl et al., 2010). It is, therefore, of interest to investigate
the interactive effects of the presence of the solute in the matrix on
the mechanical stress fields.

Although chemo-elasticity problems have been investigated
since the 1930s, e.g., (Fowler and Guggenheim, 1939), the
development of a systematic framework is due to Larche and
Cahn (1973). For a solid under chemical equilibrium, they showed
that it is possible to introduce a set of modified material properties,
namely open-system elastic constants, which account for the
interplay between the non-uniform stress field and concentration
within a linearized regime. This method hinges upon linearization
of the chemical field in terms of stress components, and has been
employed in the study of dislocations (Larche and Cahn, 1985;
Sofronis, 1995), precipitates and inclusions (Johnson and
Voorhees, 1985; King et al., 1991) and redistribution of solute in
various interstitial sites in crystalline metals (Johnson and Huh,
2003; Voorhees and Johnson, 2004).

In this paper, we build upon Larche and Cahn’s general frame-
work (Larche and Cahn, 1973), and develop a solution approach
to two-dimensional chemo-elasticity problems. By using the Airy
stress function, we derive a coupled system of nonlinear partial
differential equations for the Airy stress function and the solute
concentration. Since an analytical solution does not seem to be
feasible, we present a perturbation scheme that leads to an asymp-
totic solution for the coupled system of nonlinear equations. The
small parameter ĝ used in the perturbation scheme is a dimension-
less parameter representing the coupling between the mechanical
and chemical fields. Based on this approach, we obtain analytically
the asymptotic solutions up to the second order of ĝ for three
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fundamental problems in two-dimensional chemo-elasticity,
namely, a circular hole in an infinite plate under uniaxial tension,
a straight edge dislocation and a disclination. We also demonstrate
that, for traction-prescribed problems, the leading order term in
our asymptotic solution is equivalent to the solution obtained by
Larche and Cahn (1973) using the open-system elastic constant
approach.

The paper is arranged as follows. In Section 2, we derive the
three-dimensional governing equations in chemo-elasticity. The
corresponding two-dimensional equations are derived in Section 3
by introducing an Airy stress function. This system of two-dimen-
sional equations are solved in Section 4 by an asymptotic approach
whereby the field quantities are expanded in terms of the pertur-
bation parameter ĝ. This asymptotic approach allows us to reduce
the governing coupled nonlinear equations into a set of linear
decoupled equations which can be solved recursively to obtain
the higher order elastic and concentration fields. Using this asymp-
totic perturbation method, we investigate the disturbance of the
concentration field as well as the elastic fields caused by the emer-
gence of a hole, dislocation, and disclination under plane stress
and/or plane strain conditions in an infinite medium. The connec-
tion between the asymptotic approach and the method of open-
system material constants is also discussed. Finally, in Section 5,
we conclude by summarizing the main findings of this work.

2. Governing equations for solid state diffusion

Without loss of generality, we consider an elastic solid AxB that
consists of species A and species B. It is assumed that the concen-
tration of A in AxB may vary from x = 0 to x = xmax, where xmax is the
solvability of A in B. One may also view species A as the solute and
species B as the solvent. Furthermore, we assume that the solid in
consideration can be represented by the network model of Larche
and Cahn (1973), namely, the lattice sites of species B form a net-
work within which species A can move (diffuse). This allows the
definition of a displacement field and hence a strain field of the
solid. To simplify the mathematics, we will only consider small
strain deformation in the rest of this paper.

In the following, it is convenient to define molar concentration
of the solute per unit volume of the solvent as c ¼ x=Vm, where Vm

is the molar volume of the pure solvent in its stress-free state. We
assume that the solute-free solvent corresponds to a stress-free
state, and the compositional change of the mixture causes a volu-
metric deformation according to

ec
ij ¼ gxdij ¼ gVmcdij; ð1Þ

where dij is the Kronecker delta, g is the coefficient of compositional
expansion (CCE), which is a material property that characterizes the
linear measure of the volumetric change due to unit change of the
composition (Swaminathan et al., 2007a,b). For a given material,
the CCE can be obtained either experimentally, or by conducting
molecular dynamic simulations (Swaminathan and Qu, 2009; Cui
et al., 2012a,b,c). The total strain caused by the compositional
change and applied load can be written as

eij ¼
1
2
ðui;j þ uj;iÞ ¼ ee

ij þ ec
ij; ð2Þ

where ui is the displacement and ee
ij is the elastic strain. The total

strain needs to satisfy the compatibility condition,

epkieqljeij;kl ¼ 0; ð3Þ

where epki is the permutation symbol.
We further assume that the solid is linear elastic so that its elas-

tic state is uniquely determined by the elastic strain energy
function
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and the stress tensor is thus given by
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@ee
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; ð5Þ

where E and v are the Young’s modulus and Poisson’s ratio, respec-
tively, of the solid, which are assumed to be independent of the sol-
ute concentration. This assumption is valid for most solids under
dilute solute concentration. Eq. (5) can be inverted to give

ee
ij ¼

1
E
½ð1þ mÞrij � mrkkdij�: ð6Þ

In the absence of body forces, the stress needs to satisfy the static
equilibrium equations,

@rji

@xj
¼ 0: ð7Þ

In this stressed-solid, the chemical potential of species A will
depend on the stress (Larche and Cahn, 1973). By assuming small
strain and composition-independent isotropic elasticity, the
stress-dependent chemical potential (more precisely, the diffusion
potential of species A in species B) can be derived from the general
expression of (Swaminathan et al., 2007a,b; Cui et al., 2012a,b,c),

l ¼ l0 þ RgT log
c

cmax � c
� Vmgrkk; ð8Þ

where l0 is a constant representing the chemical potential at a
standard state, Rg is the standard gas constant, T is the absolute
temperature, c is the molar concentration of the solute, and
cmax ¼ xmax=Vm corresponds to the saturation state of the solution.
The particular choice of the potential ensures that the stoichiome-
tric state has the lowest energy (i.e., l! �1 as c ! 0), and the
state of saturation has the highest energy (i.e., l!1 as c! cmax).

The governing equations presented above are valid within the
elastic solid of interest. The stress and solute concentration within
the solid depend also on what happens at the boundary of the
solid. Therefore, boundary conditions are required in order to
uniquely determine the stress and solute concentration fields.

Consider an elastic solid X with surface S with outward unit
normal vector ni. As usual, the mechanical boundary conditions
can be prescribed as

rijni

��
Sr
¼ pj; uijSu

¼ Ui; ð9Þ

where Su þ Sr ¼ S and pj and Ui are, respectively, the prescribed
traction and displacement on the boundary. The chemical boundary
conditions can be specified as

ljSl
¼ ls; � cD

RgT
r~l

����
SJ

¼ Js; ð10Þ

where Sl þ SJ ¼ S, and ls and Js are, respectively, the prescribed
chemical potential and the flux on the boundary.

3. Two-dimensional plane problems under electrochemical
equilibrium

We assume that all field quantities are functions of x1 and x2

only, i.e.,

u1 ¼ u1ðx1; x2Þ; u2 ¼ u2ðx1; x2Þ; u3 ¼ u3ðx1; x2Þ; c ¼ cðx1; x2Þ:
ð11Þ

Further, for plane strain, we assume

e33 ¼ e23 ¼ e13 ¼ 0: ð12Þ
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