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a b s t r a c t

An analytical solution for the in-plane stress fields in composite anisotropic plates with blunt cracks is
derived using Lekhnitskii’s approach. The orthotropic behaviour is obtained as a special case of the more
general anisotropic solution.

Theoretical predictions are compared to results from a bulk of finite element analyses carried out on
tensioned plates with parabolic and U-shaped notches, showing a very satisfactory agreement.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The knowledge of the linear elastic stress fields ahead of cracks
and notches is essential in the design of structural components,
engineering strength criteria being almost based on quantities
which can be directly correlated to local stress distributions (see,
among the others, Berto and Lazzarin, 2014; Carraro et al., 2013;
Carraro and Quaresimin, 2014 and references reported therein).

In the presence of a blunt notch the singularity of the linear
elastic crack or pointed V-notch stress fields disappears and an
asymptotical behaviour is evident only at a certain distance from
the radiused notch tip. This stress redistribution, due to the finite
value of the root radius q, makes the analytical solution for the
notch stress fields much more complex than that associated to
the corresponding sharp case, and exact analytical treatments are
possible only for few ‘‘special’’ notch shapes.

With reference to isotropic plates, great efforts have been
devoted in the recent years to enrich Williams’ pioneering analysis
for pointed V notches (Williams, 1952) by including the effect of a
finite value of the notch root radius. Analytical solutions for the
Mode I, II and III elastic stress fields in the vicinity of the tip of
blunt cracks, or ‘slim’ parabolic notches, in isotropic materials were
derived by Creager and Paris (1967), the intensities of the fields
being expressed as functions of Stress Intensity Factors. Using Neu-
ber’s conformal mapping (Neuber, 1958) and considering Mode I
and Mode II loadings, Lazzarin and Tovo (1996) provided a linear

elastic unifying solution capable of addressing any combination
of notch tip radius and opening angle. This solution was later
refined by Filippi et al. (2002) and Lazzarin et al. (2011). The linear
elastic Mode III problem has been later addressed by Zappalorto
et al. (2008, 2011) and Zappalorto and Lazzarin (2011a,b), who also
dealt with the extension to the elastic–plastic case (Zappalorto and
Lazzarin, 2009,2010).

Moreover, several efficient methods to determine the Notch
Stress Intensity Factor at the V-notch tip have been developed in
the recent years (see Lazzarin et al., 2008, 2010; Treifi and
Oyadiji, 2013; Shi and Lu, 2013, and references reported therein).

Moving to anisotropic plates comparatively few works can be
found in the literature, mainly oriented to refine the classical anal-
ysis for anisotropic plates with elliptical holes by Lekhnitskii
(1984) and to make it applicable to composite laminates (see,
among the others, Bonora et al., 1993, 1994; Chern and Tuttle,
2000). This interest is motivated by the fact that, independently
of the far applied loads, the stress state close to a geometrical var-
iation, such as a hole or a notch, is inherently multiaxial and under
such a stress state the fatigue behaviour of composite materials
might be very complex (see Quaresimin and Carraro, 2013, 2014,
and Quaresimin et al., 2014 and references reported therein).

The stress distributions in an orthotropic plate with triangular
holes were studied by Ukadgaonker and Rao (1999), while the case
of an irregular shaped hole was later considered by Ukadgaonker
and Rao (2000) and Ukadgaonker and Kakhandki (2005), where
an excellent literature review on the topic can be found, as well.

A new three-dimensional theory to be applied to thick aniso-
tropic plates with sharp V-notches was developed by the present
authors (Zappalorto and Carraro, 2014), who also provided an

http://dx.doi.org/10.1016/j.ijsolstr.2014.11.024
0020-7683/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Fax: +39 0444 998888.
E-mail address: michele.zappalorto@unipd.it (M. Zappalorto).

International Journal of Solids and Structures 56–57 (2015) 136–141

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsolst r

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2014.11.024&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2014.11.024
mailto:michele.zappalorto@unipd.it
http://dx.doi.org/10.1016/j.ijsolstr.2014.11.024
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


engineering formula for the stress concentration factors of notched
orthotropic plates (Zappalorto and Carraro, 2015).

The problem of a blunt crack in an anisotropic plate was
addressed by Chiang (1994), with the main aim to determine the
relationship between the maximum notch tip stress and the stress
intensity factor of the corresponding sharp crack case.

The main aim of the present work is to analyse the rectilinearly
anisotropic blunt crack problem by providing an exact solution for
the stress fields close to the tip of a parabolic notch in a semi-infi-
nite plate under in-plane loading conditions. The solution is
obtained by using Lekhnitskii’s complex approach and stresses
are written as a function of two unknown constants which depend
on the actual notch geometry and the far applied loading condi-
tions. The orthotropic case is obtained as a particular case of the
more general solution and, in this last mentioned case, uncoupled
solutions are provided for symmetric in-plane loadings (tension or
bending) and skew-symmetric in-plane loadings (in-plane shear).
The accuracy of the solution is checked by comparison to a bulk
of FE analyses carried out on finite size anisotropic and orthotropic
plates weakened by parabolic notches. Eventually, the capability of
the new developed solution to describe the stress fields due to
U-shaped notches is verified as well.

2. Analytical preliminaries

In this work the material is supposed to have a plane of material
symmetry which coincides with the plane of reference for the
deformation field (rectilinear anisotropy). Accordingly, the elastic
stress–strain relationships can be formulated on the basis of six
independent elastic constants:
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for plane stress and:
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for plane strain, respectively. Constants Bij can be expressed in
terms of the compliances Sij:
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Stress fields in the considered anisotropic body can be written
in terms of two complex functions (Lekhnitskii, 1984):

rxx ¼ Re l2
1/1ðz1Þ þ l2

2/2ðz2Þ
� �

ryy ¼ Re /1ðz1Þ þ /2ðz2Þf g
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where l1 and l2 are unequal complex numbers defined as:

l1 ¼ a1 þ ib1 l2 ¼ a2 þ ib2 ðb1;b2 > 0Þ ð4Þ
and represent the roots of the following characteristic equations:

S11l4 � 2S16l3 þ ð2S12 þ S66Þl2 � 2S26lþ S22 ¼ 0 ð5Þ
for plane stress and

B11l4 � 2B16l3 þ ð2B12 þ B66Þl2 � 2B26lþ B22 ¼ 0 ð6Þ
for plane strain

3. Mathematical description of the notch profile

Notch tip rounding is described by using a parabolic notch pro-
file. Consider the orthogonal curvilinear coordinate system gener-
ated by the following transformation (Neuber, 1958):

z ¼ xþ iy ¼ ðuþ ivÞ2 ¼ w2 ð7Þ

where z and w are complex variables in the physical and the
mapped plane, respectively.

The curvilinear coordinate system (u, v) here introduced allows
one to completely describe a parabolic profile (see Fig. 1). The gen-
eric curve characterised by the coordinate u0 intersects the x-axis
at a value:

r0 ¼
q
2
¼ u2

0 ð8Þ

where q is the curvature radius at the notch tip. The notch edge
equation, instead, reads as:
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4. Stress distributions for anisotropic plates

Consider the following complex functions:
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In Eq. (10) A and B are real quantities, while zj are complex vari-
ables defined as:

zj ¼ nj þ igj ¼ rjeihj ð11Þ

where:

nj ¼ x0 � q
2
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� �
þ ajy0

gj ¼ bjy
0 � qajbj

ð12Þ

Moreover:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
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j

q
hj ¼ Arg nj þ igj
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In Eqs. (11)–(13), x0 and y0 are the distances from the notch tip
in the x and y directions, respectively (see Fig. 1).

Stress components can be determined by substituting Eqs. (10)
into Eqs. (3). After some algebraic arrangements one obtains:
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Fig. 1. Description of a notch with a parabolic profile.
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