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This paper presents a gradient approach for the quasi-static macroscopic modeling of superelasticity in
softening shape memory alloys bars. The model is assumed to be rate-independent and to depend on a
single internal variable. Regularization of the model is achieved through the free energy by assuming a
quadratic dependance with respect to the gradient of the internal variable. The quasi-static evolution
is then formulated in terms of two physical principles: a stability criterion which consists in selecting
the local minima of the total energy of the system and an energy balance condition. Both homogeneous
and non-homogeneous evolutions are investigated analytically for a family of material parameters. Non-
homogeneous evolutions can be divided into three stages: the localized martensite nucleation followed
by the propagation of the localized phase transformation front and finally the annihilation of the austen-
ite phase. For each stage, the local phase field profile as well as the global stress-strain response are
derived in closed-form. Due to the presence of an internal length related to the regularization, size effects
are inherent with such non-local model. We show that for sufficiently long bars, snap-backs occur at the
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onset of localized phase transformation, leading to a time discontinuity in the quasi-static evolution.
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1. Introduction

Quasi-static tensile tests performed on superelastic NiTi strips
or wires at various speeds show that the martensitic phase trans-
formation is a non-homogeneous process (Huo and Miiller, 1993;
Shaw and Kyriakides, 1995, 1997; Tobushi et al., 1993). It is char-
acterized in the global response by a first elastic-hardening phase
followed by a macroscopic instability: depending on the loading
rate, one or several martensite localizations nucleate along the
specimen and propagate at constant stress. Due to such non-
homogeneous response, the extraction of the intrinsic response
of SMA by means of a tensile test is a difficult task. Such underlying
material response is nevertheless fundamental for an appropriate
calibration of the macroscopic constitutive SMA models. Recently,
Hallai and Kyriakides (2013) have been able to stabilize a homoge-
neous phase transformation in the case of a superelastic NiTi. By
bonding stainless steel to the NiTi strip, instabilities in the NiTi
specimen are avoided due to the hardening character of the stain-
less steel, thus leading to a homogeneous phase transformation.
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By subtracting the response of the stainless steel from the response
of the bonded specimen, extraction of the (forward) intrinsic
macroscopic behavior of the NiTi is then achieved. Stress-strain
response during the phase transformation is non-monotonous,
showing a significant softening part. Such result is consistent with
the fact that the critical stress at which occurs the non-homogeneous
phase transformation of NiTi corresponds approximatively to the
Maxwell line associated to the softening intrinsic curve. Such
experimental evidences emphasize the necessity to account for
the softening behavior in the macroscopic modeling of SMAs in
order to provide a correct modeling of their structural behavior
and a better understanding of the localization phenomena (Song
et al.,, 2012; Pham, 2014).

An important class of macroscopic superelastic SMA models for
superelasticity is based on the description of the phase transforma-
tion by means of internal variables. Such models can be either
derived from a micro-mechanical approach (Sun and Hwang,
1993a,b; Cherkaoui et al., 1998) or established phenomenologically
by postulating the free energy as well as the dissipated potential
with respect to the laws of thermodynamics (Auricchio and
Sacco, 1997; Popov and Lagoudas, 2007; Zaki and Moumni, 2007;
Song et al., 2012; Pham, 2014). However, most of these studies
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remain local in the sense that the constitutive behavior at a given
point in space is function of the state variables of the same point
only, being independent of the gradient of the state variables or
of the state of other points. Such local approach is valid as long
as the behavior does not show any sign of stress softening. As soon
as the intrinsic behavior exhibits stress softening, local models are
not any more mathematically well-posed and show a number of
serious pathologies. In particular, an infinite number of austen-
ite—martensite macroscopic interfaces can nucleate without any
energy dissipation. This is in contradiction with the experimental
results for which the number of localization is limited to one or
two for very slow loading rate. From the numerical point of view,
strong mesh sensitivities are observed and the propagation of the
phase transformation cannot be handled correctly. To avoid such
issues regularized models of SMA models must be considered.
Following the seminal work of Ericksen (1975), this has been
mainly done in the context of SMA by introducing either the gradi-
ent of the strain (Carr et al., 1985; Friedman and Sprekels, 1990;
Shaw, 2002) or the gradient of the internal variable (Duval et al.,
2011) in the constitutive equations and phase transformation cri-
teria. Some of these works exhibit numerical examples illustrating
the benefit of the regularization during the non-homogeneous
phase transformation. However analytical and rigorous results
are not always available on the properties of the localized solutions
and their evolution. Such results are fundamental to better
understand the impact of the regularization on the model behavior.

In this paper we consider a regularized model for a SMA bar
with stress-softening regularized through the introduction of an
internal length and an energy dissipation depending on the gradi-
ent of the phase-field. We derive a fully analytical solution of the
one-dimensional evolution problem including explicit expressions
for the homogeneous and localized response and a full description
of the nucleation phase and the propagation of the phase-transfor-
mation front. Moreover we show that global strain-stress response
can exhibit a snap-back depending on the ratio between the length
of the bar and the introduced internal length. The regularization
introduces a scale-effect, as classical in damage and fracture
(Bazant and Pijaudier-Cabot, 1989; Pham et al., 2011). Our model
is formulated in the framework of the variational theory of rate-
independent standard processes (Halphen and Nguyen, 1975;
Mielke, 2005). The cornerstone of this framework is the minimiza-
tion (in a certain sense) of the total energy of the system. Such
minimizing technique proves to be a particularly powerful tool
for non-convex problems such as phase transformation, plasticity
or fracture. Although it has been widely used at the microscopic
scale to account for the formation of martensite domains, self-
accommodation as well as shape-memory effect (Ball and James,
1989; Puglisi and Truskinovsky, 2000; Ren and Truskinovsky,
2000; Bhattacharya, 2003), such minimization approach can be
also extended to macroscopic scale to deal with the evolution of
stress-softening SMAs. In our context, the quasi-static evolution
is required to verify a local stability criterion and an energy balance
condition, requiring the continuity of the total energy with respect
to the loading parameter. This framework has proved its efficiency
in many areas which involve stress-softening issues such as brittle
fracture (Bourdin et al., 2008), damage (Pham et al., 2011), or cou-
pled damage-plasticity (Alessi et al., 2014). This work can be
regarded as an extension of Pham (2014), where a local SMA model
is formulated and analyzed in the same framework.

The paper is organized as follows. In Section 2, we introduce the
energetic formulation of the one dimensional non-local superelas-
tic model of SMA with gradient of the phase transformation
variable. Section 3 presents the study of a one dimensional bar
submitted to a tensile test. The associated evolution problem is
formulated in terms of a stability criterion based on the selection
of local minima of the total energy and an energy balance. The

strong formulation in terms of Kuhn-Tucker conditions is then
derived under specific hypothesis. In Section 4, we present the
homogeneous evolution of the bar and calibrate our model
according to published experimental data. Section 5 is devoted to
the analysis of solution involving the localization of the phase
field. The localization profile as well as the associated global
stress—strain response are derived for a class of material functions
and discussed. Conclusions are drawn in Section 6.

The following notations are used: the dependence on the time
parameter t is indicated by a subscript whereas the dependence
on the spatial coordinate x is indicated classically by parentheses,
e.g. X — u,(x) stands for the displacement field at time t. In general,
the material functions of the phase transformation variable are
represented by sans serif letters, like E, G or R. The prime denotes
either the derivative with respect to x or the derivative with
respect to the phase transformation variable, the dot stands for
the time derivative, e.g. u)(x) = du,(x)/0x, E'(o) = dE(a)/dox or
U (x) = oue(x)/0t.

2. Gradient model of SMA with an internal variable

Macroscopic phase transformation processes are usually under-
stood as rate-independent processes. The main source of rate-
dependency usually comes from the heat release during the
austenitic-martensitic phase transformation which has an auto-
catalytic effect. However, by enforcing sufficiently slow elongation
rate (~10°s~! to 107 s1), the system can be considered as
isothermal and fully rate-independent. Such quasi-static hypothesis
will be considered in this article. The modeling of the macroscopic
superelastic behavior of SMA will be done within the standard
framework (Halphen and Nguyen, 1975) for which the material
behavior admits an energetic formulation. The standard model
we will consider is based on a single scalar internal variable z
which will account both for the phase transformation as well as
the transformation strain due to the oriented martensite (Pham,
2014). We assume that z belongs to the interval [0, 1], with z=0
and z = 1 representing a fully transformed state of austenite and
martensite, respectively. The formulation of the standard model
starts here by postulating directly the form of the strain work den-
sity at a material point. In a non-local setting, we assume that this
material point is described by its strain state ¢, the phase field zand
its gradient z'. Hence, let us call W(g, z,Z’) the strain work required
to transform a material point from the reference state (0,0,0) to a
state (g,z,Z'). This quantity depends not only on the final state
(¢,z,7') but also on the history of the loading because of the dissi-
pative nature of the transformation. For standard models of dissi-
pative processes and for homogeneous evolutions (no effect of
gradient i.e. z = 0), the strain work can be decomposed as follows

W(e z,0) = ¢(¢,2) + D(z,2), (1)

where ¢(¢,z) and D(z,z) represent the local free energy and the
total dissipated energy, respectively. Under the small strain
assumption, the free energy is taken as a quadratic function of &
which is cast under the following form

0(2.2) = 2E@)(e - p(2))” + G(2). 2)

The free energy is a state function which does not depend on the his-
tory of the loading and which involves four material functions of the
internal variables, namely the Young’s modulus of the mixture of
austenite-martensite z+— E(z), the phase transformation strain
zp(z) and the latent energy released (or absorbed) during the forward
(or the backward) phase transformation z+— G(z). For the following
developments it is useful to introduce also the compliance function
S:z—1/E(z). The total dissipated energy D(z,z) depends on the
history of the loading. For rate-independent processes, its time
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