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a b s t r a c t

In this study, the transient responses of a functionally graded piezoelectric slab were analyzed using the
transform technique. The slab was subjected to a dynamic anti-plane concentrated force and an in-plane
point electric displacement on the top surface, and the bottom surface was assumed to be open-circuit or
grounded. The analytical solutions were obtained in the Laplace transform domain, and a numerical
inversion was performed using the Durbin method. The numerical results showed that an applied point
electric displacement may instantaneously induce shear stress waves due to the piezoelectricity for both
open-circuit and grounded cases. When the bottom surface was grounded, a visible electric wave was
induced by the grounded boundary and the influence of this wave was significant when the gradient coef-
ficient of the functionally graded piezoelectric materials (FGPMs) was large enough.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric materials possess the important property of cou-
pling between mechanical and electrical fields, which renders them
useful in many areas of modern technology. These materials have
therefore been widely used for a long time as electromechanical
transducers, filters, sensors and actuators, to mention only a few
applications. In recent years, various applications of piezoelectric
materials have been implemented in non-destructive evaluation,
ultrasonic medical imaging, smart structures, and the active control
of sound and vibration. To increase the lifetime and reliability of
advanced piezoelectric structures, functionally graded material
has been considered as a way to improve interface problems. This
new type of piezoelectric material is referred to as a functionally
graded piezoelectric material. A functionally graded material
(FGM) can be prepared by continuously changing the constituents
of multi-phase materials in a predetermined volume as a fraction
of the constituent material (Khor et al., 1997; Kwon and Crimp,
1997; Nogata, 1997). Most researchers have analyzed the composi-
tion of FGPMs with three types of functions, power-law, polynomial,
and exponential, which are widely used because these functions
provide advantages in theoretical investigation. For the power-law
case, Wu et al. (2003) considered the material constants of a FGPM

cylindrical shell as a power-law functions in the radial direction.
When an axisymmetric thermal or mechanical loading is applied
on the cylindrical shell, an exact solution is obtained through the
power series expansion method together with the Fourier series
expansion method. For the polynomial FGPM, Yu et al. (2007,
2009) used the Legendre orthogonal polynomial series expansion
to determine the wave characteristics in spherically curved plates
or hollow cylinders composed of FGPMs with an open-circuit condi-
tion. For the FGPM with an exponential function variation, Li et al.
(2004) investigated the dispersion relations of Love waves in a lay-
ered functionally graded piezoelectric structure for electric open
and short cases. Zhong and Shang (2003) presented an exact three-
dimensional solution of the FGPM rectangular plate for the simply
supported and grounded boundary. Zhong and Yu (2008) proposed
a two-dimensional general solution for FGPM beams with arbitrary
graded functions, and the numerical calculation was based on the
cantilever beam with exponential variation. Time-harmonic
response of a vertically graded transversely isotropic, linearly elastic
half-space is analytically determined by Eskandari-Ghadi and
Amiri-Hezaveh (2014) by introducing a new set of potential
functions. The potential functions are set in such a way that the gov-
erning equations be simple and with physical meaning as well.

The study of wave propagation in piezoelectric materials or
FGPMs is a rather involved problem. The situation is even more
formidable when non-homogeneity has to be considered. It is
therefore not surprising that only scant information regarding
transient wave propagation problems has been presented. As in
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the case of the Stoneley wave, whose mechanical displacements
are in the sagittal plane, the amplitude of this wave decreases with
the distance away from the interface into both media (Stoneley,
1924). Bleustein (1968) and Gulayaev (1969) simultaneously dis-
covered that there exists a shear horizontal (SH) electro-acoustic
surface mode in a class of transversely isotropic piezoelectric
media, which is known today as the BG wave. The BG wave is a
unique result in the repertoire of surface acoustic wave (SAW)
theory because it has no counterpart in purely elastic solids. As a
matter of fact, since its discovery, the BG wave theory has become
one of the cornerstones of modern electro-acoustic technology. It
was shown that a BG wave can exist in cubic crystals of �43m and
23 classes, along [110] direction on the ð�110Þ plane and their
equivalent orientations. The velocity equations for piezoelectric
and elastic surface waves were derived and their characteristics
were discussed by Tseng (1970). A pure shear elastic surface wave
(MT wave) can propagate along the interface of two identical
crystals, in class 6 mm, when the z-axes of these crystals, both
parallel to the interface and perpendicular to the propagation
direction, are in opposite directions (Maerfeld and Tournois,
1971). The general equations and the fundamental piezoelectric
matrix derived for the anti-plane wave motion and Floquet theory
were applied to obtain the passing and stopping bands in a period-
ically layered infinite space by Honein and Herrman (1992). Taking
into account both the optical effect as well as the contribution from
the rotational part of an electric field, the obtained solutions not
only were valid for any wave speed range but also provided
accurate formulas to evaluate the acousto-optic interaction due
to piezoelectricity. As the wave speed is much less than the speed
of light, the solution degenerates to the well-known BG wave or
MT wave (Li, 1996). The surface acoustic wave (SAW) can be
excited and detected efficiently by using an interdigital transducer
(IDT) placed on a piezoelectric substrate. Therefore, a vast amount
of effort was invested in the research and development of SAW
devices for military and communication applications, such as delay
lines and filters for radar. The propagation mode in most devices is
the Rayleigh wave on a free surface of a piezoelectric substrate.
Recently, Ma et al. (2007) used Cagniard’s method to construct
the full-field transient solutions of piezoelectric bi-materials. Each
term represents a physical transient wave. The existence condition
of the surface wave of piezoelectric bi-materials is restricted to the
situation where the shear wave speeds of the two piezoelectric
materials are very close.

Laplace transform and the inversion of Laplace transform are
usually used for analyzing the dynamic wave-propagation prob-
lem. However, using the analytical inversion of Laplace trans-
form for analysis renders the mathematical composition
excessively complex and difficult; therefore, it is only suitable
for relatively simple geometric structures. The numerical
inversion of Laplace transform is more practical for calculating
complex problems. Lin and Ma (2011) used the numerical
Laplace inversion and the Durbin method to obtain the transient
stress responses for a 20-layered elastic structure. Ma et al.
(2012) used the Durbin method to analyze the long-time
responses for a functionally graded slab. Lin and Ma (2012)
found that the transient responses of the continuously distrib-
uted multilayered media can be simulated by the effective mate-
rial concept and are applicable to analyze the wave propagation
problem in a functionally graded slab. Ing et al. (2013) presented
an extended Durbin method for a two-sided Laplace inversion,
and evaluated the transient stress and electric displacement of
a two-layered piezoelectric medium.

In this study, the transient wave propagation problem of an
FGPM slab was investigated. The slab was subjected to dynamic
point loading on the top surface. The transient response was ana-
lyzed by employing the Laplace transform method. The interface

and boundary conditions were used to construct the system of
equations for determining the field vectors in the FGPM slab. Sub-
sequently, the Durbin method was used to implement the double
inversions for the transient response of wave propagation in the
FGPM slab.

2. Statement of the problem

For a linear FGPM medium, the constitutive equations can be
expressed as

rij ¼ cijklSkl � ekijEk; ð1Þ
Di ¼ eiklSkl þ eikEk; ð2Þ

where rij, Skl, Ek and Di indicate the stress tensor, strain tensor, elec-
tric field vector, and electric displacement vector, respectively. In
the absence of body forces, the governing equations can be
expressed as

rij;j ¼ q€ui; ð3Þ
Di;i ¼ 0; ð4Þ

where q is the mass density, ui is the displacement vector, and the
superposed dot indicates material differentiation with respect to
time. The material property parameters of the FGPM are assumed
to vary exponentially along the y-direction according to the follow-
ing exponential law

c44 ¼ c440eby; e15 ¼ e150eby; e11 ¼ e110eby; q ¼ q0eby; ð5Þ

where c44, e11, and e15 denote the elastic modulus, dielectric permit-
tivity, and piezoelectric constant, respectively. b represents the gra-
dient coefficient of the FGPM. To reduce the complexity of
mathematical analysis, all of the physical properties were assumed
to vary in the same way. Consider the following anti-plane displace-
ment and electric potential fields:

u1 ¼ u2 ¼ 0; u3 ¼ wðx; y; tÞ; / ¼ /ðx; y; tÞ: ð6Þ

From the constitutive relations of FGPM poled in the z-direction, the
nontrivial components of stresses and electric displacements are

sxz ¼ c440eby @w
@x
þ e150eby @/

@x
; ð7Þ

syz ¼ c440eby @w
@y
þ e150eby @/

@y
; ð8Þ

Dx ¼ e150eby @w
@x
� e110eby @/

@x
; ð9Þ

Dy ¼ e150eby @w
@y
� e110eby @/

@y
: ð10Þ

Substituting Eqs. (5)–(10) into Eqs. (3) and (4), the governing equa-
tions can be obtained as follows:

c440r2wþ e150r2/þ bc440
@w
@y
þ be150

@/
@y
¼ q0 €w; ð11Þ

e150r2w� e110r2/þ be150
@w
@y
� be110

@/
@y
¼ 0; ð12Þ

where

r2 ¼ @2

@x2 þ
@2

@y2 ð13Þ

is the two-dimensional Laplacian. It is worth noting that Eqs. (13)
and (12) are two coupled partial differential equations. By introduc-
ing a function

w ¼ /� e150

e110
w; ð14Þ

then the constitutive equations are reduced to the following forms:
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