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a b s t r a c t

We carry out a statistically meaningful study on self-affine rough surfaces in elastic frictionless
non-adhesive contact. We study the evolution of the true contact area under increasing squeezing
pressure from zero up to full contact, which enables us to compare the numerical results both with
asperity based models at light pressures and with Persson’s contact model for the entire range of
pressures. A good agreement of numerical results with Persson’s model is obtained for the shape of
the area-pressure curve especially near full contact, however, we obtain qualitatively different results
for its derivative at light pressures. We investigate the effects of the longest and shortest wavelengths
in surface spectrum, which control the surface Gaussianity and spectrum breadth (Nayak’s parameter).
We revisit the influence of Nayak’s parameter, which is frequently assumed to play an important role
in mechanics of rough contact.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Contact, adhesion and friction play an important role in many
natural (e.g., earthquakes) and engineering systems, for example,
assembled parts in engines, railroad contacts, bearings and gears,
breaking systems, tire-road contacts, metal forming, vehicle crash,
bio mechanics, granular materials, electric contacts, liquid sealing,
etc. In all these examples, the contacting surfaces are rough. Being
in dry contact (in absence of lubrication) means that the contacting
solids touch each other at many separate spots, whose area may be
drastically different from the prediction of classical Hertz’s contact
theory. This roughness and complexity of the contact interface may
be a major factor in analysis of such systems for strength, critical
stresses, fatigue and damage, fracture initiation, friction, adhesion,
wear, heat and electric charge transfer, and percolation. Real or
true contact area is one of the central characteristics of the contact
between rough surfaces. In this paper we analyze by means of
numerical analysis how the real contact area changes with applied
pressure and what are the relevant properties of the surface rough-
ness that influence this evolution. The numerical results are
compared with existing analytical models and numerical results

of other authors. We consider the problem of rough contact in its
simplest formulation: frictionless and non-adhesive contact
between linearly elastic half-spaces. Regardless of the apparent
simplicity of the problem and multiple analytic/experimental/
numerical studies, many questions remain open.

1.1. Roughness

All surfaces in nature and industry are rough under certain
magnification. This roughness possesses specific characteristics.
Most of rough surfaces are self-similar or self-affine, i.e. the
roughness scales under magnification with a given scaling coeffi-
cient all along the magnification range from macroscopic down to
nanometric scales. Typical examples of this scaling are found in
Earth landscapes, coast line, tectonic faults, ocean’s surface and
engineering surfaces (Thomas, 1999; Meakin, 1998). Among a
wide variety of rough surfaces, the class of isotropic Gaussian sur-
face deserves a particular attention from the scientific community
due to its relative simplicity and generality (Longuet-Higgins,
1957; Nayak, 1971; Greenwood and Williamson, 1966; Bush
et al., 1975). By isotropy one implies that statistical properties
of any two profiles measured along different directions are iden-
tical. By normality or Gaussianity of a surface one implies that
surface heights are normally distributed.

The self-affinity of rough surfaces may be decoded by analysis
of its autocorrelation function Rðx; yÞ or the Fourier transform of
R which is called the power spectral density (PSD) Uðkx; kyÞ, where
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kx; ky are the wavenumbers1 in orthogonal directions x; y. For
many natural and engineering surfaces, the PSD decays as a
power-law of the wavenumber (Majumdar and Tien, 1990; Dodds
and Robson, 1973; Vallet et al., 2009):

Uðkx; kyÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q� ��2ð1þHÞ

;

where H is the Hurst roughness exponent which is related to the
fractal dimension D as D ¼ 3� H. The PSD is bounded at the upper
scale by the longest wavelength kl (or the smallest wavenumber
kl ¼ L=kl). To handle a continuum model of a rough surface, the
PSD may be bounded at the lower scale by the shortest wavelength
ks (or the highest wavenumber ks ¼ L=ks) (for detailed discussion
see Section 3).

1.2. Mechanics of rough contact

The surface roughness has important consequences on the
mechanics and physics of contact. For instance, the widely used
Hertz theory of contact (Hertz, 1882; Johnson, 1987), in which
the contacting surfaces are assumed to be smooth, is not valid
for rough surfaces, as the roughness induces high fluctuations of
local deformations close to the contact surface, that go easily
beyond the elastic limits and/or fracture strength of materials. This
fact follows directly from the observation, that for most materials
and loads the real contact area A between contacting solids is only
a small fraction of the nominal (apparent) contact area A0 pre-
dicted by Hertz theory. The real contact area characterizes the
transfer of heat and electricity through the contact interface, fric-
tional properties of the contact as well as the strength of adhesion
and amount of wear.

The stochastic nature of rough contact makes it difficult to esti-
mate material rupture or stick–slip transition within a determinis-
tic approach and requires a probabilistic description and a
statistical analysis. Many factors affect the mechanics of rough
contact. For example, the real contact area depends on mechanics
(contact pressure, friction, adhesion, wear), on multi-physics
effects (Joule heating in electric contact, chemical reactions, fric-
tional heating), on time (viscosity and aging of materials) and envi-
ronment (oxidation of surfaces, temperature, humidity). While in
experiments it is hard to study all these aspects separately and
deduce the more relevant ones, in numerical simulations it is diffi-
cult to include many mechanisms to study their combined effect,
as the models become excessively complex and hardly verifiable.
In experiments, the contacting surfaces are also hard to observe
in situ to characterize directly the contact zones. Thus indirect
observation methods were adapted (measurements of the heat
and electric transfer through the contact interface, Bowden and
Tabor, 2001), which may bias the measurements due to the strong
coupling between involved phenomena.

Another challenge in rough contact arises from the breakdown
of continuum contact mechanics at nano-scale (Luan and Robbins,
2005). This issue is relevant if the roughness is present at atomic
scale (Krim and Palasantzas, 1995), which is often the case
(Misbah et al., 2010; Einax et al., 2013) particularly for crystalline
materials for which dislocations reaching free surfaces leave
atomic ‘‘steps’’ on them. This atomic roughness can be taken into
account by means of atomic modeling (Sinnott et al., 2008;
Spijker et al., 2013). But it is particularly hard to link the atomistic
simulations of rough surfaces with macroscopic results as there
is a lack of representativity in analyzed samples. As there is
no scale separation in surface roughness, classical hierarchical

homogenization models cannot be directly applied to the analysis
of rough contact. However, coupling between atomistic simula-
tions with finite element models (Ramisetti et al., 2013;
Ramisetti et al., 2014) (eventually accompanied with discrete dis-
location dynamics coupling) is a promising technique to perform
large simulations of contact between rough surfaces at atomic
scale (Anciaux and Molinari, 2009; Anciaux and Molinari, 2010).

To remain in the framework of continuum mechanics, one
needs to abandon the atomistic scale and introduce an artificial
short wavelength cutoff ks in the surface to obtain a roughness
which is smooth under a certain magnification. Consideration of
such surfaces with truncated fractality lies in the foundation of
classical analytical models of rough contact; moreover, valid
numerical studies are only possible on surfaces which are smooth
enough. Normally, at the longest wavelengths, real surfaces do not
demonstrate self-affinity and the PSD has a plateau for a certain
range of wavelengths (Persson et al., 2005). This plateau includes
wavelengths from kl to kr , where kl is the longest wavelength and
kr is a so-called rolloff wavelength. So the fractality of rough
surfaces is truncated at certain high and low frequencies.

We consider normal contact between two linearly elastic half-
spaces (E1; m1 and E2; m2 are Young’s moduli and Poisson’s ratios
of the solids) possessing rough surfaces h1ðx; yÞ; h2ðx; yÞ. Under
assumption of frictionless non-adhesive contact, this problem
may be replaced by contact between a rigid surface with an
effective roughness h ¼ h1 � h2 and an elastic flat half-space with
effective Young’s modulus (Johnson, 1987)

E� ¼ E1E2=ðð1� m2
1ÞE2 þ ð1� m2

2ÞE1Þ: ð1Þ

This substitution is common and enables to use numerical methods,
which are simpler than those needed for the original formulation.

In Section 2 we give an overview of analytical and numerical
models of rough contact. In Section 3 we discuss the generation
of rough surfaces with prescribed properties, also we demonstrate
the role of cutoffs in surface spectrum on the Gaussianity of result-
ing roughness. Equations linking Nayak’s parameter and asperity
density with the Hurst exponents and cutoff wavenumbers are
derived (see also A). In Section 4 the numerical model and the
set-up are briefly outlined. The evolution of the real contact area
at light loads is analyzed and compared to analytical models in
Section 5. General trends in the contact area evolution from zero
to full contact are discussed in Section 6. Asymptotics of the con-
tact area near the full contact is investigated in Section 7. In Section
8 we propose an estimation of error bounds of the contact area in
numerical simulations and experimental measurements. In Section
9 we discuss the obtained results and prospective work.

2. Overview of mechanical models of rough contact

2.1. Analytical models

Two classes of analytical models exist. The first class is based on
the notion of asperities (summits of the surface at which rh ¼ 0).
The pioneering work by Greenwood and Williamson (GW) (1966)
was followed by more elaborated models refining geometrical
and statistical aspects of the GW models (McCool, 1986; Bush
et al., 1975; Greenwood, 2006; Thomas, 1999; Carbone and
Bottiglione, 2008). The statistical properties of asperities (e.g., joint
probability density of heights and curvatures) are often derived
from the random process description of rough surfaces (Nayak,
1971) or may be measured directly; tips of asperities may be
assumed spherical or elliptical, with constant or varying curvature.
Note that the progress in asperity based models is strongly associ-
ated with Nayak’s extension (Nayak, 1971) of Longuet-Higgins
studies (Longuet-Higgins, 1957) on statistical properties of random

1 Hereinafter by a wavenumber we imply a spectroscopic wavenumber normalized
by the sample length L to render them dimensionless.
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