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a b s t r a c t

It is argued that representation of the effective properties of heterogeneous materials in terms of a single
parameter of concentration of inhomogeneities (such as volume fraction or crack density) is generally
impossible for mixtures of inhomogeneities of diverse shapes; the exceptions – when this is possible –
are identified. Application of such parameters to microstructures of ‘‘irregular’’ microgeometries may
lead to various inconsistencies. Instead, the effective constants in such cases can be represented in terms
of a ‘‘tracking’’ parameter for a specific process of evolution of a microstructural pattern. These issues are
discussed in the context of the elastic and conductive properties.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In theories of effective physical properties of materials contain-
ing inhomogeneities, the central problem is typically viewed as
finding the function

effective property ¼ f concentration parameter|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
?
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A: ð1:1Þ

Much attention has been paid to specification of this function,
in particular, to the way it is affected by interactions. However,
the argument of this function is a non-trivial matter. Moreover,
the very possibility of such representation is questionable, as dis-
cussed in the present work. Some of the issues discussed here
may appear straightforward, but they do not seem to have been
adequately addressed in literature.

A common choice of the concentration parameter is the volume
fraction of inhomogeneities, /. This choice implies that contribu-
tion of a given inhomogeneity to the effective property is taken
as proportional to its volume. Therefore the choice of / as the con-
centration parameter is adequate if all the inhomogeneities have
identical shapes; in this case, the effective properties are expresses
as a product of / and shape factor (the latter is known in a closed
form for the ellipsoidal shapes). However, for mixtures of inhomo-
geneities of diverse shapes, / cannot be used for the reason that it

distorts the actual contributions of individual inhomogeneities to
the overall properties. Moreover, a mixture of diverse shapes
cannot generally be replaced by inhomogeneities of identical
(‘‘average’’) shape (Sevostianov and Kachanov, 2012).

For cracks, limitations of using the conventional crack density
parameter (scalar or tensor) are even more severe. Indeed, such
parameters are defined for circular cracks only: they assume that
the contribution of a crack is taken as proportional to its radius
cubed, a3 (the generalization of Budiansky and O’Connell (1976)
to the elliptical cracks in the case of random orientations assumes
that all ellipses have identical eccentricities). Thus, the crack den-
sity parameter is not even defined for cracks of more complex
shapes. Whereas for planar cracks of random shapes one can show
that an equivalent distribution of circular cracks (of generally
unknown concentration) exists (Gueguen and Kachanov, 2011),
such an equivalence breaks down for non-flat cracks (Mear et al.,
2007).

The general requirement that the concentration parameter
(such as / or crack density) represents individual inhomogeneities
in accordance with their actual contributions to overall property
may also be violated by interactions between inhomogeneities
(since the said parameters are insensitive for mutual positions of
inhomogeneities). For example, for coplanar (or stacked) cracks,
interactions make the dependence of crack contributions to the
effective compliance on their radii stronger (or weaker) than a3.
Therefore using the conventional crack density parameter beyond
the non-interaction approximation (NIA) – in which they are
defined – is not fully logical. This difficulty is frequently by-passed
by using approximate schemes that account for interactions by
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placing inhomogeneities – treated as non-interacting ones – into
certain effective environment, either the effective matrix (as in
the differential scheme, see Bruggeman (1935, 1937), Vavakin
and Salganik (1975), McLaughlin (1977), Zimmerman (1991) or
in the self-consistent scheme, see Kröner (1958), Skorohod
(1961), Hill (1965), Budiansky (1965) and Benveniste and Milton
(2010a,b) or the effective field (as in Mori–Tanaka’s scheme, see
Mori and Tanaka (1973) and Benveniste (1986); or the effective
field method, see Levin (1975) and Kanaun (1982) and the book
of Kanaun and Levin (2008).

The present work does not discuss the effect of interaction and
limits of applicability of NIA (see Sevostianov and Kachanov (2013)
for discussion of the mentioned limitations in detail). Instead we
focus on difficulties related to mixtures of inhomogeneities of
diverse shapes (for example, spheroids of diverse aspect ratios).
Such cases are quite common in heterogeneous materials, particu-
larly in naturally occurring ones. For them, volume fraction / may
be inadequate as a concentration parameter even in the NIA.

2. Cases when simple concentration parameters can be
identified

The discussion of concentration parameters is best conducted in
terms of property contribution tensors that give contributions of
individual inhomogeneities to the considered effective property
(see Horii and Nemat-Nasser (1983), Kachanov and Sevostianov
(2005) and Eroshkin and Tsukrov (2005) for details).

In the context of linear elastic properties, we consider a refer-
ence volume V, containing an inhomogeneity, and represent, as
usual, the strain e per volume V as a sum

e ¼ S0 : r1 þ De; or; in components;

eij ¼ S0
ijklr

1
kl þ Deij; ð2:1Þ

where S0 is the matrix compliance tensor and r1 is the ‘‘remotely
applied’’ stress (more precisely, the constant stress corresponding
to homogeneous boundary conditions in tractions on the boundary
of the volume, ti ¼ r1ij xj). The extra strain, per V, due to an inhomo-
geneity of volume V1 is a linear function of the applied stress:

De ¼ V1

V
H : r1; ð2:2Þ

where H is the fourth-rank compliance contribution tensor of the
inhomogeneity, taken per unit volume of the latter. Tensor H
depends on the shape of the inhomogeneity and its elastic con-
stants, as well as constants of the matrix; it has the usual symme-
tries of the compliance tensor (Hijkl = Hjikl = Hijlk = Hklij).

The extra strain due to multiple inhomogeneities – with interac-
tions between them neglected – is a sum

De ¼ 1
V

X
VkHðkÞ : r1; ð2:3Þ

so that the extra compliance is given by

DS ¼ 1
V

X
VkHðkÞ: ð2:4Þ

Relation (2.4) solves the problem in the NIA provided the H-ten-
sors of inhomogeneities – treated as isolated ones – are known. It
also shows the key role of H-tensors in the problem of effective
properties: it is them that have to be summed up.

The problem addressed in the present work can be formulated
as follows: can the sum (2.4) be expressed in terms of certain con-
centration parameter (scalar, in the isotropic case of random orien-
tations, or tensor, in anisotropic cases)?

We start with the general requirement to proper concentration
parameters: They must represent individual inhomogeneities in
accordance with their actual contributions to the considered property.
Violation of this requirement may lead to non-uniqueness of the
function (1.1), even in the NIA.

It appears unlikely that, in the general case, the expression
(1/V)

P
VkH(k) for the extra compliance due to inhomogeneities

can be represented in terms of certain simple concentration
parameter, such as volume fraction or crack density. Table 1
summarizes the cases for which such a representation is possible.

The following comments on Table 1 should be made:

� Coefficients s1, s2 entering the representation for the isotro-
pic fourth-rank tensor of elastic constants are expressed in
terms of traces of the H-tensors, namely, s1 ¼ ð1=15Þ
ð2Hijij � HiikkÞ; s2 = (1/30)(3Hijij � Hiikk). Constants a1 and a2

can be specified using the results of Bristow (1960). Constant
C = 32(1 � m2)/(3(2 � m)E). For flat non-circular cracks, con-
stants C1; C2 cannot generally be related to crack geometries
by closed-form expressions (see Gueguen and Kachanov,
2011);

� Scalar crack density (for the isotropic case of random orien-
tations) and its second- and fourth-rank tensor generaliza-
tions are defined by q ¼ ð1=VÞ

P
a3

k and a = (1/V)
P

(a3nn)(k), b = (1/V)
P

(a3nnnn)(k), where ak are crack radii;
� The scalar crack density parameter can also be applied to

the isotropic case of randomly oriented elliptical cracks,
provided all the ellipses have the same eccentricity
(Budiansky and O’Connell, 1976);

Table 1
Effective elastic properties: cases when simple concentration parameters can be identified.

Microstructure Formula for (1/V)
P

VkH(k) Parameter

Distributions over shapes and orientations are statistically independent
Arbitrary ð1=VÞ

P
VkHðkÞ ¼ / hHi /

Inhomogeneities of arbitrary identical shape or inhomogeneities of diverse shapes for which equivalent shape can be identified
Inhomogeneities of arbitrary shapes and of arbitrary orientation distribution ð1=VÞ

P
nVnHðnÞijkl ¼ /

P
nQ ðnÞip Q ðnÞjq Q ðnÞkr Q ðnÞlt H0

pqrt

(Q ðnÞij are directional cosines of H(n))

/

Parallel inhomogeneities ð1=VÞ
P

VnHðnÞ ¼ /H /

Isotropic mixture of inhomogeneities ð1=VÞ
P

VnHðnÞijkl ¼ / s1dijdkl þ s2ðdikdjl þ dildjkÞ
� � /

Cracks
Arbitrary orientation distribution of circular cracks ð1=VÞ

P
VnHðnÞijkl ¼ C ðdikajl þ dilajk þ djkail þ djlaikÞ=4þ m0bijkl=2

� � aij, bijkl

Randomly oriented circular cracks ð1=VÞ
P

VnHðnÞijkl ¼ q a1dijdkl þ a2ðdikdjl þ dildjkÞ
� � q

Strongly oblate spheroidal pores of small diverse aspect ratios ð1=VÞ
P

VnHðnÞijkl ¼ C½ðdikajl þ dilajk þ djkail þ djlaikÞ=4þ m0bijkl=2� aij, bijkl

Multiple flat cracks of non-circular shapes with random deviations from circles ð1=VÞ
P

VnHðnÞijkl ¼ C1ðdika�jl þ dila�jk þ djka�il þ djla�ikÞ=4þ C2b�ijkl
a�ij;b

�
ijkl
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