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Roman Vodička ⇑, Marek Petrík
Technical University of Košice, Civil Engineering Faculty, Vysokoškolská 4, 042 00 Košice, Slovakia

a r t i c l e i n f o

Article history:
Received 27 June 2014
Received in revised form 25 September
2014
Available online 14 October 2014

Keywords:
Degenerate scale
Boundary integral equation
Symmetric Galerkin boundary element
method
Generalized plain strain
Anisotropic elasticity
Barnett–Lothe tensor

a b s t r a c t

Degenerate scales usually refer to a size effect which causes non-unique solutions of boundary integral
equations for certain type of boundary value problems with a unique solution. They are closely connected
to the presence of a logarithmic function in the integral kernel of the single-layer potential operator. The
equations of the elasticity theory provide one of the known application fields where degenerate scales
appear. The paper discusses conditions and formula for controlling and detection of the degenerate scales
in the case of fully anisotropic analysis. No restrictions are considered for the material, only the loading
should cause two-dimensional deformation of the anisotropic body. A technique for the evaluation of the
degenerate scales is discussed and tested. The examples provide results of special simple cases and dem-
onstrate suitability of the proposed technique in relation to calculation of degenerate scales by numerical
solution of pertinent boundary integral equation by the boundary element method.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Degenerate scales appear in the solution of some boundary
integral equations (BIE). They are provoked in situations affected
by the size of the domain, where the BIE has either multiple solu-
tions or does not have a solution at all, while the pertinent bound-
ary value problem (BVP) is uniquely solvable. They arise in the
solution of Dirichlet BVP (DBVP) by means of a single-layer poten-
tial operator, whose weakly singular integral kernel includes a log-
arithmic function. The logarithmic character of the kernel is well
known in isotropic plane elasticity but it is also retained in the case
of anisotropy. In numerical calculations, the degenerate scales may
affect the solution of DBVP, if e.g. the boundary element method
(BEM) is implemented for pertinent BIE. The above phenomenon
represents a well known difficulty appearing in applications of BIEs
to the solution of other plane elliptic DBVPs. In potential theory,
the degenerate scale for a boundary is characterized by the unit
value of the logarithmic capacity of this boundary, see Jaswon
and Symm (1977), McLean (2000) and Yan and Sloan (1988). Some
approaches for avoiding the non-invertibility of the BIE obtained
from the harmonic single-layer potential operator were studied
in Chen et al. (2014, 2002b) and Christiansen (1982, 1985). A spe-
cial attention to the exterior DBVP, especially for the case of
domains with several holes, was paid recently in Chen et al.

(2009b) and Corfdir and Bonnet (2013). Some special cases of
boundary contours were discussed in Chen et al. (2005, 2009c)
and Kuo et al. (2013). The degenerate scales for the biharmonic sin-
gle-layer potential were analyzed in depth in Christiansen (1998,
2001) and Costabel and Dauge (1996). Under special conditions,
the degenerate scales arise also in solving the Helmholtz equation
(Kress and Spassov, 1983) or the Stokes equation (Dijkstra and
Mattheij, 2008) by BIE.

The degenerate scales in plane isotropic elasticity were deter-
mined in numerous analytical and numerical approaches for sim-
ple circular, elliptic or annular domains in Chen et al. (2002a), He
et al. (1996), Heise (1978, 1987), Vodička and Mantič (2008) and
for more general domains in Kuhn et al. (1987) and Vodička and
Mantič (2004a). The exterior DBVP was analyzed in Chen and Lin
(2008) and Chen et al. (2009d), some examples with asymptotic
behavior of degenerate scales was mentioned in Chen (2011) and
Vodička and Mantič (2004b) and proved in Vodička (2013). A
mathematical proof of the existence of degenerate scales was given
in Constanda (1994) and Vodička and Mantič (2004b) and the
upper bounds for degenerate scales were proved in Corfdir and
Bonnet (2014). Theoretically well based approaches of removing
the non-uniqueness from the solution of the single-layer potential
BIE were proposed in Constanda (1995) and Hsiao and Wendland
(1985).

So far, up to the authors’ knowledge, there is no mention about
the degenerate scales for anisotropic media in elasticity. Neverthe-
less, numerous BEM application in this field, e.g. Blázquez et al.
(2006), Mantič and París (1998) and Shiah and Tan (2000), may
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under some conditions give rise to this phenomenon. The differ-
ence with respect to the standard isotropic analysis is that for a
general anisotropic material the inplane and antiplane deforma-
tions do not have to be uncoupled so that if for isotropic inplane
elasticity there are generally two degenerate scales and for the
antiplane elasticity there exists one additional degenerate scale,
see e.g. Chen et al. (2009a), there are expected three degenerate
scales for general anisotropic elasticity with the displacement field
depending on two dimensions, referred also to as generalized plain
strain state. The objective of the present paper is, first, to develop a
formula calculating the degenerate scales for general anisotropic
material with no a priori assumption about material symmetry
and, second, to assess its validity by a numerical analysis of the
problem implementing the symmetric Galerkin BEM (SGBEM)
(Bonnet et al., 1998) for the solution of the pertinent BIE.

In the following part, Section 2, some basic equations are sum-
marized. Simultaneously, basic relations from anisotropic elasticity
related to the use of the single-layer potential are mentioned, based
on the theory developed in Ting (1996) and Hwu (2010). In the
introduction to Section 3, known relations for finding degenerate
scales are recalled from Vodička and Mantič (2004b, 2008), the par-
ticular relations for anisotropic materials are described in the sub-
sections. Namely, an estimate which guarantees the invertibility
of the single-layer potential operator is given in Section 3.1 and der-
ivation of the formula for calculating the degenerate scales is pro-
vided in Section 3.2. The formula is tested in the section of
examples, Section 4, by an SGBEM code and in one problem also
by a comparison with an analytical solution. The paper also includes
two appendices which provide a calculation of an integral
(Appendix A) required in Section 3.1 and a brief summary of
anisotropic fundamental solution (Appendix B) based on the Stroh
formalism.

2. Solution of a Dirichlet boundary value problem by the single-
layer potential

Let us consider an elastic body, a domain X� h�h; hi � R3;

X � R2 with a bounded Lipschitz boundary (McLean, 2000)
@X ¼ C as shown in Fig. 1.

Consider a fixed cartesian coordinate system xi (i ¼ 1;2;3)
placed so that X resides in the coordinate plane x1x2. Let
u ¼ u1;u2;u3ð Þ> be the displacement solution of the following
Dirichlet problem for the Navier equation in the case of two-
dimensional deformations of the body (or the generalized plane
strain state) introduced such that no displacement variable
depends on the coordinate x3:

cijkluk;ljðxÞ ¼ 0; x 2 X; ð1aÞ

uiðxÞ ¼ giðxÞ; x 2 C; ð1bÞ

where we denoted x ¼ ðx1; x2Þ and we used the positive definite
fourth-order tensor of elastic stiffnesses cijkl (Gurtin, 1972) with

no special consideration of material symmetry which is then
generally anisotropic. Let us stress that even though the antiplane
displacements u3 are allowed, all deformations depend only on
inplane coordinates x1 and x2. It also means that l and j could be
summed only for 1 and 2, cf. also (4b) below for used elastic
parameters.

Let Uðx; yÞ ¼ Uijðx; yÞ
� �

i;j¼1;2;3 be the symmetric second-order
tensor of the fundamental solution of the Navier equation (1a),
i.e. displacements at the space point x due to unit forces

F ¼ f1; f2; f3ð Þ ¼
1
0
0

0@ 1A; 0
1
0

0@ 1A; 0
0
1

0@ 1A0@ 1A applied at the point y ¼ ðy1; y2Þ.

In fact the forces are line forces applied along x3 axis as long as
the loading does not depend on x3 when the generalized plane
strain state is to be considered. The fundamental solution U is
given according to Ting (1996) as:

Uðx; yÞ ¼ 1
2p
�H ln

r
r0
� p HS>ðHÞ þ SHðHÞ

� �
þK

� �
¼ � 1

2p
H ln

r
r0
� ZðHÞ þ 1

2p
K; ð2Þ

where the polar coordinates y1 ¼ x1 þ r cos H; y2 ¼ x2 þ r sin H are
used, r0 is an arbitrary constant to make the argument of logarithm
dimensionless (it is usually set to a unit value), and K is an arbitrary
constant symmetric matrix.

The material characteristics usually defined by the elastic stiff-
ness tensor cijkl are included here in the form of the Barnett–Lothe
tensors H and S. All matrices in Eq. (2) can be obtained by known
formulae of anisotropic elasticity as follows (see also Ting, 1996):

SðHÞ HðHÞ
�LðHÞ S>ðHÞ

� �
¼ 1

p

Z H

0

�T�1ðhÞR>ðhÞ T�1ðhÞ
�QðhÞ þ RðhÞT�1ðhÞR>ðhÞ �RðhÞT�1ðhÞ

 !
dh;

ð3aÞ

S H

�L S>

� �
¼

SðpÞ HðpÞ
�LðpÞ S>ðpÞ

� �
; ð3bÞ

with

QðHÞ RðHÞ
R>ðHÞ TðHÞ

� �
¼

I cos H I sin H

�I sin H I cos H

� �
Q R

R> T

� �
I cos H �I sin H

I sin H I cos H

� �
:

ð4aÞ

The relation of the introduced matrices to the elastic stiffnesses cijkl

is provided by the relations

Tik ¼ ci2k2; Rik ¼ ci1k2; Q ik ¼ ci1k1: ð4bÞ

Another way of the matrices definition is presented in Appendix B
where also some of their useful properties are mentioned.

The solution u of DBVP (1) in the indirect method can be
expressed in the form of the single-layer potential

uðxÞ ¼
Z

C
Uðx; yÞuðyÞdCðyÞ ¼ UuðxÞ; ð5Þ

Fig. 1. Description of a cylindrical bounded domain and its cross-section.
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