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a b s t r a c t

The equilibria and stability of a shallow prestressed arch (beam–column) are investigated theoretically
and experimentally. The deflection of the arch is unilaterally constrained by a displacement-control
device. Both snap-through and remote coexisting equilibria are observed. Force–deflection curves for pri-
mary and secondary equilibrium branches are measured for varying constraint locations. The effect of the
constraint location on the critical condition at which stability is lost, resulting in a jump to a remote equi-
librium, is investigated. Good agreement is attained between experimental data and theoretical results
(based on minimization of the constrained strain energy and an inextensibility assumption).

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The shallow arch has been used extensively to illustrate the
non-linear structural behavior commonly found in more complex
civil, mechanical, and aerospace structures. Unlike its linear coun-
terpart, the flat beam, the arch can exhibit complex responses
when transversely loaded, for example snap-through buckling in
which the arch suddenly jumps from one equilibrium configura-
tion to a remote coexisting configuration (Fung and Kaplan,
1952). This remote configuration is often associated with an
inverted position, but there can be multiple competing configura-
tions to which the arch can jump (Pi and Bradford, 2014). The pur-
pose of the present work is to characterize these remote equilibria
and their stability.

Previous work has primarily focused on a dead loading formula-
tion, motivated by the classical testing procedure which involves
hanging masses from the arch. This is equivalent to treating the
applied force as the control parameter (Fung and Kaplan, 1952;
Roorda, 1965). In the present study, an actuating device constrains
the transverse deflection of the arch at the point of application (i.e.
displacement control) (Chen and Hung, 2011), and the reaction force
is measured via a collocated load cell. The device is not rigidly
connected to the arch and therefore is capably of pushing but not

pulling—the force measured by the load cell is greater than or
equal to zero. As such, the deflection of the arch (at the point of
contact) must adhere to a unilateral (or inequality) constraint pre-
scribed by the displacement of the device (Mirasso and Godoy,
1997; Godoy and Mirasso, 2003). Unilateral constraints in buckling
problems are not without precedence, e.g., discrete systems
(Burgess, 1971; Klarbring, 1988), beams (Adan et al., 1994;
Domokos et al., 1997; Villaggio, 1979; Tzaros and Mistakidis,
2011; Sun and Natori, 1996; Hexiang et al., 1999; Chen and Ro,
2010), and plates (Chai, 2002). Recently, Lu and Lu (2014) studied
the behavior of a shallow arch constrained by a fixed rigid plate.
The post-buckled response of bilaterally constrained columns has
been investigated (Chai, 1998). Constrained buckling has more
general applications in three dimensional structures, such as stents
(McGrath et al., 2014), deep drilling (Thompson et al., 2012), and
DNA structures (Hirsh, 2013).

Under dead loading, snap-through occurs when stiffness is lost
at a horizontal tangency on the force–deflection curve (a limit
point) or at a bifurcation point. A greater portion of the force–
deflection curve is stabilized under displacement control. For a uni-
lateral constraint, snap-through occurs when the reaction goes to
zero and contact is lost. For a bilateral constraint (i.e. the actuating
device is rigidly connected to the arch (Camescasse et al., 2014)),
negative reaction forces can be achieved and snap-through does
not occur. In all cases, a single branch of the force–deflection curve
is explored when the control parameter (load or displacement)
quasi-statically changes. Such natural loading histories preclude
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the exploration of remote equilibria. The force–deflection curve
can exhibit ‘‘looping’’ with multiple coexisting branches (Sabir
and Lock, 1973). Harrison (1978) demonstrated these looping
branches for a shallow circular arch under central or near central
dead loading using a discrete element method. The first objective
of this paper is to experimentally explore these secondary equilib-
ria and assess their stability. The measured data is compared to an
experimentally-motivated theoretical formulation for displace-
ment-control tests. The theory involves minimizing the strain
energy subject to an inequality (unilateral) constraint and an
equality constraint to account for inextensibility in the arch.

Much of the earliest work on the buckling of shallow arches
focused on symmetrically loaded arches (Lock, 1966; Hsu et al.,
1969; Fung and Kaplan, 1952; Chen et al., 2009; Moghaddasie
and Stanciulescu, 2013; Bradford et al., 2002) , either uniformly
distributed loads (UDLs) or central point loads. However, the crit-
ical buckling load is sensitive to small imperfections in the load
location. Harrison (1982) numerically demonstrated that the
intensity of load that an arch can support is appreciably reduced
when a UDL does not cover the whole span. A classic saddle-node
bifurcation is observed when a central point load is slightly offset
(Harrison, 1978). Roorda (1965) experimentally showed this cusp
imperfection-sensitivity, and Thompson and Hunt (1983) subse-
quently found analytical expressions for the cusp. The critical
buckling load is also sensitive to the thermal environment
(Virgin et al., 2014) and slight geometric imperfections (Schreyer,
1972; Roorda, 1968; Pi and Bradford, 2012), which are outside
the scope of the present work.

Hsu (1968) and Plaut (1979) analytically assessed the influence
of the load position—not restricted to the vicinity of the arch cen-
ter, but along the entire span—on the critical buckling load. Plaut
showed that, for a large enough rise, a bifurcation (cusp) occurs
at the midpoint while two minima move outward from it. The
present work experimentally validates the predicted influence of
load position on critical buckling load (Plaut, 1979). Additionally,
this paper extends these results, both analytically and experimen-
tally, to the critical mode-jumping load on a secondary equilibrium
branch, which to date has never been shown.

2. The shallow arch

2.1. The experimental setup

A photograph of the system is shown in Fig. 1(a). The arch was
made of a flat relatively-stiff quasi-isotropic carbon fiber bar with
the following cross-sectional dimensions: width 25:4 mm and
thickness 0:794 mm. The bending stiffness of the bar was experi-
mentally determined to be EI ¼ 48:8 kN mm2.

The bar was pinned at both ends. The pin supports (see Fig. 1(b)
and (c)) consisted of 12.7 mm rods mounted in bearing fixtures to
permit pure rotation with negligible friction. The rods were

machined to permit the bar to lie approximately on the rods’ axes
of rotation, which were fastened with a backing plate via two
threaded holes. Initially, the bar was installed in a flat configura-
tion, spanning a length of L ¼ 292:1 mm. Then, by applying an
end displacement, the strut buckles into its fundamental buckled
shape, depicted in Fig. 1(b).

The arch was laterally actuated at a single point via a screw
device whose translational motion was transferred through a lin-
ear bearing. At the interface between the linear bearing and the
arch, a load cell measured the normal force at the point of contact.
The horizontal point of contact was varied by sliding the apparatus
along guide rails. The deflection at a point on the arch was mea-
sured by a laser proximity sensor. During the quasi-static tests,
the force and deflection measurements were simultaneously
acquired.

2.2. Testing procedure

Snap-through in shallow arches has classically been studied
under dead loading (Roorda, 1965). In the present experiments,
an adjustable bound on the lateral deflection is enforced by the
screw device, commonly referred to as displacement control.
Displacement control stabilizes a greater portion of the
force–deflection curve (Virgin et al., 2014), but only positive reac-
tion forces are permitted, in our case, because the load cell is not
attached to the arch: i.e., the load cell pushes but does not pull.

Two objectives of this study are: (1) analyze the influence of
constraint position on the equilibria paths, and (2) investigate
the existence of secondary equilibria and their stability. To investi-
gate the former, various combinations of constraint position and
deflection measurement position are tested; to investigate the lat-
ter, the system is manually perturbed to a secondary, stable equi-
librium path. The testing procedure used for a single constraint
application position and deflection measurement position is bro-
ken down into three parts: the primary, secondary, and tertiary
branches. For reference, a representative force–deflection curve is
given in Fig. 2 for a reaction force measured left-of-center and
the deflection measured right-of-center. The testing procedure is
as follows:

Primary branch:

1. The load cell is initially not in contact with the arch, and the
reaction force is zero (F ¼ 0). The arch takes its fundamental
deformed shape ði0Þ, a half sinusoid.

2. The load cell is advanced toward the center of curvature, makes
contact with the arch, and gradually constrains the deflection at
the point of application. Due to the load offset, the arch takes
the deformed shape (i), a combination of shape ði0Þ and a full
sinusoid. The force initially increases, reaches a maximum value
(this is the loss of stability under dead loading—a classic saddle-
node bifurcation), and then decreases.

Fig. 1. (a) The experimental test system, (b) the pin support at one end and the load cell attached to a displacement-control screw device, and (c) the pin support.
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