
Parametric analysis of structures from flat vaults to reciprocal grids

Maurizio Brocato a,b,⇑, Lucia Mondardini a

a University Paris-Est, Laboratoire GSA – Geométrie Structure Architecture (Ecole nationale supérieure d’architecture Paris-Malaquais), 14 rue Bonaparte, 75006 Paris, France
b University Paris-Est, Laboratoire Navier, 6 et 8 Av. Blaise Pascal, 77455 Champs-sur-Marne, France

a r t i c l e i n f o

Article history:
Received 12 May 2013
Received in revised form 15 May 2014
Available online 20 November 2014

Keywords:
Stone structure
Flat vault
Stereotomy
Reciprocal grid
Parametric analysis

a b s t r a c t

We propose a parametric analysis of a class of structural systems stemming from the 17th century inven-
tion of Joseph Abeille usually called flat vault and reaching the field of reciprocal grids. Our purpose is to
understand the load descent paths taking place in the various specimens of this class and their relations
with basic structural principles such as that of the inverted catenary, useful to deal with vaults, or that of
the lever, more appropriate for grids.

The analysis is performed on changes of the geometry and of the topology that preserve the logic of the
bonding of stone blocks characterizing Abeille’s invention. Shown results concern the distribution of the
elastic energy, the reactions, the chirality and the stress and displacement maps.

Our findings support the idea that the structures belonging to this class of structures (and having
reasonable proportions) are rather to be considered as deflected grids than as compressed vaults. Further-
more, a local bending interests the blocks, for because of the bonding, in a way that is typical of reciprocal
structures.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The starting point of this work is a stone structure, called a flat
vault, invented by the French engineer Joseph Abeille in 1699,
where the appropriate interweaving of stone blocks allows the
covering of a rectangular space. In the structure designed by Abeil-
le, the standard block has two orthogonal vertical sections in the
shape of isosceles trapezia (each with one pair of sides horizontal,
see Fig. 1). Some variations exist that present more complex
shapes, but we will not study them here.

In the past years many researchers—especially in the field of
construction history—have analyzed the mechanical behavior of
these objects to give a synthetic interpretation of their nature (a
bibliographical survey is presented in Brocato and Mondardini
(2011); see also Fleury (2009), Nichilo (2003), Rabasa-Dìaz
(1998), Sakarovitch (2006) and Uva (2003)). These interpretations
are based on two main positions:

(V1) The structure behaves like a vault, where the stone ele-
ments are primarily subject to axial stress and transmit a sensi-
ble thrust on the confinement structures (catenary effect).

(V2) The structure can be seen as a kind of stacked timber grid,
where elements are primarily subject to bending (‘levery’ effect,
if one admits the neologism).

If the rationale behind the first thesis is obvious, the second is sup-
ported by a kinship between Abeille’s system and a particular fam-
ily of structures called nexorades or reciprocal frames (Baverel
et al., 2000). In particular the structural assembly of timbers called
Serlio floor (a proposal appearing in the literature since the mid-
dle-age; see Yeomans (1997)) seemingly works like Abeille’s: in
both examples, each element supports and is supported at the
same time by other equivalent components in order to cover a
space with shorter pieces than the span.

Our purpose is to understand at which rate, depending on its
geometry, the structural system is represented by either model.
This insight is useful in the practice of structural civil engineering,
both because it helps deciding on the adequacy of the system to
any particular application and because it helps assigning criteria
for the design of the individual pieces, of the supports and of the
abutments.

In the last decade, following a proposal by Dyskin et al. (2001)
that renewed the attention on an even older theme, some authors
have dealt with the subject of the topological interlocking of blocks
(Dyskin et al., 2003a; Dyskin et al., 2003b; Estrin et al., 2011;
Khandelwal et al., 2012), showing interest on structural systems
kin to those studied here as a basis to develop new materials. In
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these papers the investigation on the mechanical properties of the
system focuses predominantly on the force-deflection behavior
under large displacements and until ruin. Experiments made to
gather information on this behavior show evidence of the setting
of a catenary effect during failure, as confirmed by comparison
with some theoretical results obtained modeling the structure as
an arch (Khandelwal et al., 2012).

This dominance of the catenary effect can be explained by the
fact that the considered systems—unlike those examined here—
are made of regular polyhedra (especially tetrahedra), i.e. elements
that have no dimension prevailing on the others. Hence our inves-
tigation might contribute extending the picture put forward in the
quoted papers.

It must be noticed that Khandelwal et al. (2012) seems to
deduce from the literature on Abeille’s bonds that these flat vaults
do not withstand loads of inverted direction and work only under a
stabilizing self-weight. This is actually not the case: Abeille’s flat
vaults can withstand orthogonal and transversal loads in all direc-
tions and do not need be stabilized by their weight.

An investigation on a similar system is presented in Brocato and
Mondardini (2012), where spherical domes are considered and a
method to define an optimal structure is proposed. Here the study
of flat vaults is developed through the generation of three paramet-
ric families of topologically equal structures, plus one family of
topological variants.

When considering the two previously listed viewpoints (V1 and
V2), clearly, the first can be expected to be more consistent of the
second if the elements composing the structure are bulky, less if
they are slender. A slenderness parameter, given by the ratio of
the horizontal dimensions of the blocks, can be introduced to help

gauging this issue. Similarly, considering that the catenary effect is
likely to be more efficient when the thickness of the structure
grows with respect to the span, less in the opposite condition, a
thickness parameter is introduced, given by the ratio between
the thickness of the vault and its overall length. Also the inclination
of the contact planes between blocks can be assumed to contribute,
when they are closer to vertical planes, more to the behavior of a
catenary system than to that of a ‘levery’ one and vice versa in
the opposite condition. This wedge effect can be measured by what
we name the ‘splice angle’, i.e., the inclination from the vertical of
the legs of the trapezia describing the cross sections of blocks.

The chiral geometry of the considered structures has a conse-
quence on the nature of their thrust, which, under a symmetric
load, is necessarily expressed by a chiral set of force vectors.
Nevertheless this effect should diminish when the number of
pieces composing the vault grows, as the characteristic length of
the chirality becomes much smaller than the span. A parameter
that can be introduced to represent the importance of chirality is
the number of stone rows the structure is made of or, equivalently,
the ratio of the distance between two such rows on the span.

Hence, we have taken into account the four quoted parameters
to generate several structures bearing equivalent loads with equiv-
alent boundary conditions and study their variations.

To evaluate the difference between members of these families,
the definition of the shear, bending and membrane energies within
the structure is adapted to the case and their quotas in terms of total
elastic energy computed for a given structure. Then these quotas are
compared for flat vaults having different slendernesses and splice
angles, showing that the influence of the latter on the behavior of
the vault is but slightly important. The same quotas are compared
for vaults with different number of rows and for vaults with different
thickness parameter. Maps of the bending part of the elastic energy
are also proposed to show the difference between the structure con-
sidered here and a grid of continuous interlacing beams.

In the next section the parametric families of considered struc-
tures, the model used for numerical simulations, and the different
measures used to indicate the mechanical performances of the
vault are presented. The numerical results are given, in Section 3,
with a discussion on these performances, considering four different
kind of analyses, which focus respectively on the distribution of the
elastic energy, the boundary reactions, the geometric chirality and
its mechanical effect, and a class of topological variations of the
system.

2. Assumptions

2.1. Parametric geometry

The geometry of blocks is presented in Fig. 2. Any cross section
of the block orthogonal to the 2a and 2d long edges has the shape
of an isosceles trapezium; the same happens for the cross sections
orthogonal to the 2c and 2b edges. The splice angle u is the angle
between the vertical and the legs of these trapezia, and it is the
same for all cross sections in both x- and y-direction (see Fig. 2).
The height of these cross sections, or structural thickness of the
vault, is denoted by h. These six measures are related by the two
conditions

c ¼ bþ h tan u; d ¼ a� h tan u; ð1Þ

so that two of them, namely c and d, will in this paper be always
considered as dependent variables defined by (1).

The overall length L and the span S of the vault indicated in
Fig. 3 are related to the even integer number 2N representing the
number of rows spanning in the orthogonal direction by the
equations:

Fig. 1. Examples of flat structures presented by Frézier, 1980. Abeille’s proposal
appears in the red box. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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