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a b s t r a c t

We study the effective magnetoelectricity of piezoelectric–piezomagnetic fibrous composites with
imperfect interfaces subjected to anti-plane shear deformation coupled to in-plane electromagnetic
fields. Two kinds of imperfect interfaces, mechanically stiff and highly electromagnetic conducting inter-
faces, and mechanically compliant and weakly electromagnetic conducting interfaces, are considered for
the phenomenon of contact resistance between the constituents. The decoupling transformation
approach previously used in composite media with perfect interfaces is extended to the current config-
uration. The predicted macroscopic behaviors are in good agreement with the known solutions. It is
observed that moduli of the composite with imperfect contacts do not fulfill the compatibility conditions
L�L�1

a Lb � LbL�1
a L� ¼ 0, which was supposed to be microstructure independent connections for the two-

phase heterogeneous media. Finally, we use the two-level recursive scheme to show the equivalence
between the imperfect interfaces and an infinity thin homogeneous interface layer.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The subject of the present paper is exploiting the decoupling
transformation to study the effective moduli of multiferroic fibrous
composites with imperfect interfaces. We consider a piezoelectric-
piezomagnetic two-phase composite under an anti-plane shear
deformation coupled to in-plane electromagnetic fields. The con-
stituents are transversely isotropic and are with circular cylindrical
microgeometry. Two kinds of imperfect interfaces are considered:
(i) mechanically stiff and highly electromagnetic conducting inter-
faces, and (ii) mechanically compliant and weakly electromagnetic
conducting interfaces.

The decoupling transformation was first proposed by Straley
(1981) who showed that the thermoelectric problem in a two-
phase composite can be transformed into a simpler uncoupled con-
duction problem of an inhomogeneous medium with the same
microgeometry. Milgrom and Shtrikman (1989a) and Milgrom
and Shtrikman (1989b) later showed that this transformation is
in fact a special case of the field decoupling transformation that
can be applied to transport problems in two-phase composites
with multi-coupled fields. Further, they found that one of the
consequence of this mapping is that the overall response of a
composite made of two constituents must obey a number of com-
patibility relations, which are independent of the microstructure of

the media and the volume fractions of the phases. The finding is
based on the fact that there exists a congruent transformation
which simultaneously diagonalizes the two-phase material prop-
erty matrices into an eigenbasis. Benveniste (1994a), Benveniste
(1994b) and Benveniste (1997) extended this idea to the piezoelec-
tric composite or polycrystalline aggregates subjected to the anti-
plane shear deformation with in-plane electric intensity. Following
this line, Benveniste (1995) applied it to the piezoelectric-piezo-
magnetic composite. Related subjects of this kind also include
Chen (1993), Chen (1997) and Nan (1994).

Almost all of the existing works using decoupling transforma-
tion adopt the assumption of ideal coupling between the constitu-
ents. In the context of magnetoelectricity, this assumption implies
that the potential fields (displacement, electric potential, magnetic
potential) and the normal component of the fluxes (stress, electric
displacement, magnetic flux) are assumed to be continuous at
phase interfaces. Imperfect interfaces may, however, be present
in many circumstances such as roughness, debonding, sliding or
cracking at the common boundary. Non-ideal interfaces may exhi-
bit a discontinuity in the normal component of the flux but yet
maintaining the continuity of the potential fields. It may arise
due to the presence of a thin interphase layer of stiff elasticity
and highly electromagnetic conductivity. This kind of interface
assumes the discontinuity of the normal component of the flux is
proportional to the surface Laplacian of the potential field at the
contact boundary (Pan et al., 2009; Kuo, 2013). Another kind of
non-ideal interfaces is that in which the normal component of
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the flux is continuous, but the potential field suffers a jump across
it. Such behavior arises, for example, in the presence of a thin inter-
phase of compliant elasticity and weakly electromagnetic conduc-
tivity. In this study, this kind of contact resistance is modeled by
assuming that the discontinuity in the potential field is propor-
tional to the normal component of the flux by means of an inter-
face parameter (Wang and Pan, 2007; Kuo, 2013).

In 2013, Kuo studied the similar problems with the same types
of imperfect interfaces. In that work, Kuo extended the classic work
of Rayleigh (1892) in a periodic conductive perfect composite to
the coupled piezoelectric-piezomagnetic composite with imperfect
interfaces. This approach is an exact method that provides the
detailed local field distributions of the heterogeneous media. The
result was then applied to estimate the effective behaviors of the
composite. In this paper, however, we propose a different approach
focusing on the extension of the decoupling transformation to the
proposed problem. In contrast to the exact method proposed by
Kuo (2013), here the micromechanical model is an approximate
approach based on a single inclusion, and focus on the overall
properties of the inhomogeneous media.

The plan of this article is organized as follows. We consider a
composite medium made of piezoelectric and piezomagnetic
phases arranged in a microstructure consisting of parallel cylinders
in a matrix in Section 2. The composite is subjected to anti-plane
shear mode of deformation coupled to in-plane electromagnetic
fields. The interface contacts of the constituents are imperfect:
either mechanically stiff and highly electromagnetic conducting
interfaces, or mechanically compliant and weakly electromagnetic
conducting interfaces. In Section 3, the decoupling transformation
is proposed which maps the field equations into an equivalent
class of conductive heterogeneous media. We obtain effective
moduli in Section 4. Numerical results are shown and compared
with those obtained by other methods in Section 5. Further, we
find that moduli of the composite with imperfect contacts do not
fulfill the compatibility conditions L�L�1

a Lb � LbL�1
a L� ¼ 0, which

was supposed to be microstructure independent connections for
the two-phase composite. We use the two-level recursive scheme
with the Mori–Tanaka method to show that the equivalence
between the two-phase composite with imperfect interfaces and
the three-phase heterogeneous media.

2. General setting

We consider a two-phase magnetoelectroelastic media sub-
jected to anti-plane shear strains c0

zx; c0
zy, in-plane electric fields

E0
x ; E0

y and magnetic fields H0
x ; H0

y at infinity. The composite there-
fore is in a state of generalized anti-plane shear mode of deforma-
tion and can be expressed by (Benveniste, 1995)

ux ¼ uy ¼ 0; uz ¼ w x; yð Þ;
u ¼ u x; yð Þ;
w ¼ w x; yð Þ: ð1Þ

Here ux; uy; uz are the mechanical displacements along the x-, y-,
and z-axes, and u and w are the electric and magnetic potentials,
respectively. The constitutive laws of the constituents for the non-
vanishing fields can be recast in the compact form

RðkÞj ¼ LðkÞZðkÞj ; j ¼ x; y; ð2Þ

where

RðkÞj ¼
rzj

Dj

Bj

0
B@

1
CA
ðkÞ

; Lk ¼
C44 e15 q15

e15 �j11 �k11

q15 �k11 �l11

0
B@

1
CA
ðkÞ

; ZðkÞj ¼
czj

�Ej

�Hj

0
B@

1
CA
ðkÞ

:

ð3Þ

The superscript k refers to the matrix (m) or inclusion (i) phase. In
Eq. (3), rzj; Dj; Bj are the shear stress, electric displacement and
magnetic flux; czj; Ej; Hj are the shear strain, electric field and mag-
netic field vectors. The material constants C44; j11; l11; k11 are the
elastic modulus, dielectric permittivity, magnetic permeability, and
the magnetoelectric coupling coefficient, while e15 and q15 are the
piezoelectric and piezomagnetic coefficients.

The shear strains czx and czy, in-plane electric fields Ex and Ey,
and in-plane magnetic fields Hx and Hy can be derived from the
gradient of vertical elastic displacement w, electric potential u,
and magnetic potential w as follows:

czj ¼ w; j; �Ej ¼ u; j; �Hj ¼ w; j; ð4Þ

where the subscript j following a comma denotes the derivative
with respect to x or y. In the absence of body force, electric charge
density and electric current density, the equilibrium equations are

rzj; j ¼ 0; Dj; j ¼ 0; Bj; j ¼ 0: ð5Þ

Substitution of Eqs. (2) and (4) into Eq. (5) yields

C44r2wþ e15r2uþ q15r2w ¼ 0;

e15r2w� j11r2u� k11r2w ¼ 0;

q15r2w� k11r2u� l11r2w ¼ 0; ð6Þ

where r2 ¼ @2=@x2 þ @2=@y2 represents the two-dimensional
Laplace operator for the variable x and y.

In addition to these differential equations, we have to use inter-
face conditions. Two kinds of imperfect contacts of the constitu-
ents are studied. First, consider that the interface is a
mechanically stiff and highly electromagnetic conducting inter-
face, which is a generalization of the interface stress model (GISM).
It assumes that the potential U is continuous across the interface
@V , while there is a jump in the normal component of the current
RðmÞj nj (Miloh and Benveniste, 1999; Pan et al., 2009). Specifically,
one has

RðiÞj nj

���
@V
� RðmÞj nj

���
@V
¼ ar2

s U
ðiÞ
���
@V
; UðmÞ

��
@V ¼ UðiÞ

��
@V ð7Þ

with

a ¼ lim
t!0

L�1
c !0

ðtLcÞ ¼
aw 0 0
0 au 0
0 0 aw

0
B@

1
CA: ð8Þ

Here U ¼ ðw;u;wÞT ; T denotes the transpose of the vector,

r2
s ¼ 1

r2
@2

@h2 is the surface Laplace operator, n is the unit outward nor-
mal to the interface @V , and the repeated index j denotes the sum-
mation over the components x and y. The imperfect interface is
modeled by a concentric elastic coating of thickness t and material

property Lc ¼ diagðCðcÞ44 ; �jðcÞ11 ; �l
ðcÞ
11Þ (Torquato and Rintoul, 1995;

Hashin, 2001; Miloh and Benveniste, 1999). When a ¼ 0, it corre-
sponds to a perfect interface, while a�1 ¼ 0 corresponds to an isoex-
pansion and equipotential interface.

Another kind of non-ideal interfaces is a mechanically compli-
ant and weakly electromagnetic conducting interface, which is a
generalization of the linear spring model (GLSM). In this case, the
potential U has a jump on the interface boundary @V , while the
normal component Rjnj of the current is continuous across the
interface (Miloh and Benveniste, 1999; Wang and Pan, 2007),

RðmÞj nj

���
@V
¼ RðiÞj nj

���
@V
; UðmÞ

��
@V
�UðiÞ

��
@V
¼ bRðiÞj nj

���
@V

ð9Þ

with
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