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a b s t r a c t

In the current study, we rigorously analyze an arbitrarily shaped piezoelectric inclusion surrounded by an
infinite isotropic piezoelectric matrix subject to antiplane shear and in plane electric field loadings. The
inclusion and matrix are separated by a homogeneously imperfect interface that characterizes a spring
type interaction between the elastic and electric interfacial boundary conditions. Furthermore, the
boundary conditions for a mechanically compliant, weakly conducting and mechanically compliant,
highly conducting interface are incorporated into the analysis. Using complex variable techniques the
potential function inside the inclusion is formulated as a Faber Series expansion and a system of linear
algebraic equations for a closed form solution is developed for the corresponding Faber coefficients under
a finite number of terms. Under this approach, expressions for both the elastic and electric fields are
developed for the inclusion and matrix. The results are presented in exact form for an elliptic inclusion
and numerically simulated for a finite number of terms for purposes of verification. Additionally, the
cases of a square and star inclusion geometry are analyzed and results are presented numerically. The
results clearly demonstrate that not only is the stress distribution inside the inclusion interface non-
uniform, but that the magnitude of the peak stresses are highly dependent on the inclusion shape and
imperfect interface condition.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the modern world of structures, machines and computers,
composite materials have a well deserved niche. Piezoelectric com-
posites can be found in a multitude of electrical and electrome-
chanical systems and as such, the problem of a piezoelectric
inclusion has received a considerable amount attention in recent
years (see, for Example Wang and Sudak, 2007; Gao and Noda,
2004; Pan, 2004; Shen and Hung, 2012; Shen et al., 2010; Sudak,
2003; Tiersten, 1969).

Mishan and Qijun studied the plane problem of an elliptical pie-
zoelectric inclusion (Mishan and Qijun, 1998). Their work
employed the use of the Faber Series technique and the analysis
was conducted on an inclusion/matrix of similar material with a
perfect interface. Gao and Noda analyzed the problem of an arbi-
trary piezoelectric inclusion in an antiplane setting (Gao and
Noda, 2004). They also incorporated the Faber Series technique
in their solution scheme and studied a wide range of inclusion
geometries ranging from an ellipse to a square, incorporating elas-

tic mismatch in their analysis. Wang and Sudak presented the case
of a piezoelectric bimaterial with an imperfect interface and near
by screw dislocation (Wang and Sudak, 2007). This work estab-
lished a generalized method for formulating both weakly and
highly conducting electric imperfect interface conditions under a
similar guise for linear piezoelectric materials in antiplane elastic-
ity. Shen et al. formulated a generalized approach for three phase
piezoelectric inclusions of arbitrary shape (Shen et al., 2010). In
their work Shen et al. analyzed square, rectangular, and triangular
inclusion geometries with dissimilar inclusion/interphase/matrix
materials through use of the Faber Series technique under the con-
text of perfect bonding. Shen and Hung extended the piezoelectric
inclusion case to incorporate magnetoelectroelastics in their anal-
ysis of an arbitrary shaped inclusion (Shen and Hung, 2012). They
too employ the use of the Faber Series technique with dissimilar
inclusion/matrix material properties analyzing perfectly bonded
triangular and star shaped inclusion geometries.

The aforementioned works generally analyze piezoelectric
inclusions with at least one of the following simplifications; perfect
bonding along the interface or a simple inclusion boundary geom-
etry (such as a circle or an ellipse). In reality, these assumptions do
not adequately describe the interaction between the inclusion and
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matrix across the boundary between them because they cannot
account for phenomena such as interfacial damage and debonding.
This void has been partially filled through the works of Gao and
Noda (2004), Ru (2003), Shen and Hung (2012), Sudak and Wang
(2013) and Shen et al. (2010) where analytical models of imper-
fectly bonded elastic inclusions and piezoelectric bimaterials have
been developed. Of specific interest are the models incorporating
the use of the Faber Series technique; which allows for the intro-
duction of an arbitrary inclusion geometry where traditional con-
formal mapping techniques fall short due to the immense
complexity of the mapping function for geometries that are non-
elliptic and the lack of an ability to simultaneously map both the
interior and exterior of a simply connected domain. The Faber Ser-
ies technique circumvents these difficulties through the construc-
tion of the inclusion potential function as a Faber Series (Gao and
Noda, 2004; Shen and Hung, 2012; Sudak and Wang, 2013; Shen
et al., 2010).

The objective of the present work is to rigorously model the
interaction between an piezoelectric inclusion embedded in an
piezoelectric matrix separated by a arbitrary shaped homoge-
neously imperfect interface. The interface will first be assumed
to operate as a mechanically compliant, dielectrically weakly con-
ducting interface and then later as a mechanically compliant,
dielectrically highly conducting interface. The generally accepted
linear spring type model will be used for the imperfect interface
with continuous tractions and discontinuous displacements
(Wang and Sudak, 2007; Sudak and Wang, 2013). In this model
the traction components exhibit a proportionality through the
spring type parameters to their respective displacements where,
given a thin interphase layer separating the inclusion from the sur-
rounding matrix, the idea of an imperfect interface model is to sim-
ulate the thin interphase layer as a 2-dimensional curve of
vanishing thickness ‘t’ where the material properties of the inter-
phase layer are represented by the so-called ‘spring-factor’ type
interface parameters. As an example, for the mechanically compli-
ant weakly conducting case, the mechanical interface parameter
represents the ratio of the elastic stiffness and the interphase
thickness ‘t’ and the electric interface parameter represents the
product of the interphase conductivity and thickness ‘t’
(Benveniste and Miloh, 2001; Chen, 2001). The dielectrically
weakly conducting interface experiences continuity across the
interface with respect to the normal electric displacement and dis-
continuity for the electric potential whereas the dielectrically
highly conducting interface experiences continuity across the
interface with respect to the tangential electric field and a discon-
tinuity in the normal electric displacement. In a similar fashion to
the mechanical properties of the interface, the jump in the electri-
cal potentials/displacements is proportional to the normal electric
displacements/tangential field across the interface for the weakly
conducting interface and the highly conducting interface
respectively.

Section 2 aims to discuss the foundations of the piezoelectric
constitutive model and the introduction of the familiar Laplace
equation from said model. Employing a complex variable formula-
tion, in which the Laplace equation is solved via complex potential
functions, the boundary value problem for the mechanically com-
pliant dielectrically weakly conducting interface between the
inclusion and matrix is defined. Section 3.2, through the introduc-
tion of the Faber Series for the potential function inside the inclu-
sion in conjunction with the previously established boundary
conditions, shows the derivation of the complex potential function
for the matrix through the process of analytic continuation. Fol-
lowing Sections 3.2 and 3.3 outlines the incorporation of the
imperfect interface condition and outlines the process to obtaining
a generalized solution for arbitrary inclusion geometries. In Section
4 the case of a mechanically compliant, highly conducting interface

is developed and a second generalized solution is obtained. In Sec-
tion 5 the cases of elliptical, triangular, square, and star shaped
inclusions are examined and analytical solutions for the stress
and electric displacement/field around the inclusion-matrix inter-
face are provided. Finally in Section 6 the results of the study are
discussed and some conclusions are made.

2. Mathematical preliminaries

In this work, the case of a piezoelectric inclusion will be mod-
eled by considering a semi-infinite domain in R2 that is simply
connected containing a single arbitrarily shaped inclusion with
material properties distinct from the surrounding matrix. The com-
plex coordinate z ¼ x1 þ ix2 represents a singular point ðx1; x2Þ in
R2. The boundary curve of the inclusion matrix interface will be
referred to as @L and the regions of the inclusion and matrix will
be referred to as D1 and D2 respectively (see Fig. 1). As such, any
future subscripts and superscripts taking the value of 1 or 2 will
be understood to refer to the inclusion and matrix respectively. It
is assumed that both the inclusion and matrix are isotropic with
respect to the x1x2 plane and possess the same poling direction;
the positive x3 axis. The inclusion and matrix will be exposed to
remote anti-plane shear and in-plane electric field loadings and
in addition to the prescribed loading, the resulting anti-plane
deformation in the far field of the matrix shall satisfy simple shear
conditions.

2.1. Fundamental equations of piezoelectric materials

Linear piezoelectric materials, operating in a fixed cartesian
coordinate system, are governed by the following constitutive
equations (Tiersten, 1969) in antiplane elasticity

rij;j ¼ 0; Di;i ¼ 0; ð1Þ

f3i ¼
1
2
ðu3;i þ ui;3Þ; Ei ¼ �u;i; ð2Þ

r3i ¼ C442f3i � e15Ei; Di ¼ e152f3i þ �11Ei i ¼ 1;2: ð3Þ

In the above equations a comma represents the convention of dif-
ferentiation and repeated indices represent summations following
the traditional Einstein summation convention. C44; e15, and �11

are material constants corresponding to the elastic, piezoelectric,
and dielectric permitivity of a piezoelectric material, respectively.
Additionally, r3i;Di; Ei; f3i; ui; and u;i for i ¼ 1;2 are the stress,

Fig. 1. Piezoelectric inclusion (D1) bounded by curve @L embedded in a piezoelec-
tric matrix (D2).
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