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a b s t r a c t

A non-uniqueness study for a hydromechanical boundary value problem is performed. A fully saturated
porous medium is considered using two different elasto-plastic constitutive equations to describe the
mechanical behavior of the skeleton. Both models are based on the Drucker–Prager yield criterion with
a hyperbolic hardening rule for the cohesion and friction angle as a function of an equivalent plastic
strain. The two constitutive equations taken into account (Plasol and Aniso-Plasol) differ only for the elas-
tic part of the model: isotropic elasticity or cross anisotropic elasticity respectively. A real hydromechan-
ical experiment which consists in a hollow cylinder test on a Boom Clay sample is modeled in two phases.
For the first phase (a hydromechanical unloading) non-uniqueness studies are carried out using both con-
stitutive equations. In the second phase, boundary conditions are kept constant to dissipate the excess
water pressure. It is shown in the first phase that the time step discretization of the numerical problem
has an effect on the initialization of the Newton–Raphson algorithm on a given time step. Different solu-
tions for the same initial boundary value problem can consequently be found. A convergence study is also
presented giving an insight into the behavior of the computation during the iterations.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the simulation of initial boundary value problems using con-
stitutive equations for geomaterial behavior, it is well known that
some difficulties can arise, particularly if degradation of the mate-
rials occurs. These problems have been studied for the case of sin-
gle phase materials and some theoretical results have been
established. Within the small strain assumption and for a rate (or
incremental) problem, the uniqueness can be proven using the
so-called Hill exclusion functional (Hill, 1978). In particular, con-
sidering some additional hypothesis, the uniqueness of a rate prob-
lem can be ensured when the second order work is positive
everywhere and for any strain field (see Hill, 1958, 1959). This
result which gives a link between the monotonicity condition
involved in the Hill exclusion functional condition and the
positiveness of the second order work is far from general. It holds
for instance for classical isotropic hardening elastoplastic and
hypoplastic models (see Chambon and Caillerie, 1999).

On the other hand, it has been clearly proven that some general
features (such as the non-associativeness) of constitutive
equations induce the possibility of negativeness of the second
order work (see Mroz, 1963; Raniecki and Bruhns, 1981; Bigoni
and Hueckel, 1991). It is for this reason that computations of geo-
material structures cause more difficulties than computations with
simple materials such as metals. An extensive review of the litera-
ture concerning non-uniqueness can be found in Petryk (1997) and
Bigoni (2000) (see also Bigoni, 2012). Nevertheless, it is worth
mentioning studies concerning localization (Rice, 1976) and con-
trollability (Nova, 1994; Chambon et al., 2004, Chambon, 2005)
which can be seen as very particular cases of uniqueness studies
in rate problems (in both cases at least one of the non-unique solu-
tions is homogeneous, as expected).

Unfortunately, the theoretical results cannot be applied for all
kinds of constitutive equations, including the implicit ones
obtained by numerical homogenization in the so-called multiscale
computations (see Kouznetsova et al. (2001) and Frey et al. (2012)
for coupled problems). To have a good insight into the non-unique-
ness problem of an initial boundary value problem, one can effi-
ciently study the loss of uniqueness using numerical tools.

If an implicit method is applied to solve the problem for a load-
ing step (or the rate problem if this loading step tends towards
zero), a full Newton–Raphson method (whose solution can depend
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on the initial guess) is usually used since this problem is still non-
linear due to the possibility for many points of the computed body
to load or unload. More generally, from a numerical standpoint, in
case of non-uniqueness, the solution can be influenced by different
numerical input such as the spatial discretization of the problem,
the size of the time step, the mesh spacing, some tolerance values,
and so on (Chambon et al., 2001b).

It is well known that the problems regarding loss of uniqueness
of the solution of initial boundary value problems can be related to
the triggering of localized strains. The classical non-viscous consti-
tutive equations cannot describe properly the development of the
localized deformations since this implies rupture without energy
consumption and a strong mesh dependency of the numerical
results (see Bazant et al., 1984). To avoid this non-physical behav-
ior, an internal length has to be incorporated in the modeling. In
the past, several approaches were proposed to formulate this kind
of enhanced models. Let us, for instance, cite non-local models
(Pijaudier-Cabot and Bazant, 1987), strain gradient plasticity theo-
ries (Aifantis, 1984, 1987) and higher order continua theories (see
Forest and Sievert (2006) for a complete review).

Unlike the above theories, it is worth mentioning the work
of Gajo et al. (2004) in which, following the main idea of
Hutchinson and Tvergaard (1981) and Petryk and Thermann
(2002), the post-localization analysis is performed enforcing
directly the thickness and the inclination of the shear bands.

In the framework of microstructure continuum theory formu-
lated by Germain (1973b), second gradient models (Chambon
et al., 2001a) can be considered to solve mesh-dependency of an
initial boundary value problem when localized strains appear.
Despite the fact that an internal length is incorporated in the
modeling, this is not sufficient to avoid the occurrence of multiple
solutions for the same problem (see Chambon et al., 1998). Gener-
alizing to second gradient models the numerical method described
previously for classical model, the non-uniqueness has been clearly
demonstrated in many papers (Chambon and Moullet (2004) or
Bésuelle et al. (2006) for instance). A principal conclusion of these
numerical investigations is that as soon as the monotonicity condi-
tion is lost for the classical part of the model, a non-uniqueness
study has to be performed.

Since geomaterials are multi-phase, it is necessary to take into
account not only the solid skeleton (with its balance of momentum
and constitutive equation) but also the fluid phase (and its corre-
sponding equations) as well as the coupling between them. The
resulting initial boundary value problem could perhaps restore
uniqueness due to the properties of the Darcy law involved in
the coupled problem, which, some argue, intrinsically introduce
an internal length. One of the objectives of this paper is to show
that this way of thinking is erroneous. For the hydro-mechanical
coupled problem studied in this paper, numerical experiments
are performed varying certain numerical inputs (the size of the
time step) in order to obtain several solutions, in the same way
as has been done for a single phase material (see Sieffert et al.,
2009). A local hydromechanical second gradient model (see
Collin et al., 2006) is used in this work to guaranty the objectivity
of the solutions. It is important to highlight that, in the work of
Collin et al. (2006) the second gradient effects are related only to
the solid skeleton. A more general formulation is derived by
Sciarra et al. (2007) in which the second gradient effects are asso-
ciated also to the fluid phase.

There are few theoretical works dealing with the possible non-
uniqueness of solutions for a coupled problem. It is worth men-
tioning the pioneering works of Rice (1975), Loret and Prevost
(1991), Schrefler et al. (1995), Runesson et al. (1996), Vardoulakis
(1996a,b) and Armero (1999). Some studies have been performed
concerning the instability of some solutions starting from a homo-
geneous state by Benallal and Comi (2002, 2003). Similarly, some

localization analysis for coupled problems have been investigated
by Zhang and Schrefler (2001) and Schrefler et al. (2006).

Some other studies regarding the strain localization in satu-
rated porous media are carried out by Callari and Armero (2002)
and Andrade and Borja (2007). In the former work, the shear bands
are modeled using the enhanced finite element method. In this
method, strong discontinuities are introduced in the unknown
fields at the enhanced element level. In the latter work, generaliz-
ing the formulations of Li et al. (2004) and Armero (1999), the
behavior of shear bands for loose and dense sands under globally
undrained conditions is simulated and the influence of a nonhomo-
geneous initial porosity field on the localized solution is analyzed.

More recently, to study the hydromechanical behavior of
deep tunnel, some localized solutions are investigated by Plassart
et al. (2013) in which, the so-called second gradient dilation
(Fernandes et al., 2008) is considered to regularize the numerical
problem.

Let us finally mention the works concerning controllability in a
coupled context done by Imposimato and Nova (1998), Buscarnera
and Nova (2011) and Mihalache and Buscarnera (2014) (see also
Buscarnera and Prisco, 2012). All these theoretical studies are
restricted to initially homogeneous bodies and used a linearization
of the constitutive equations discarding possible unloading behav-
ior. The use of a so-called comparison solid is clearly not mathe-
matically justified, and moreover it is not clear that instability
and non-uniqueness of the solutions are linked for problem using
constitutive equations involving non associativeness like the ones
used for geomaterials. However, such studies are useful and can
be seen as heuristic ones.

In this study, only a numerical problem is examined and there is
no proof that the behavior of the underlying mathematical prob-
lems is the same as the one of the numerical computations. We
are able to investigate cases for which the initial state is not homo-
geneous and also to take into account unloading as well as loading.
It is another heuristic manner to tackle this important problem of
the validity of the continuum modeling of two-phase materials.

The work is organized as follows: in Section 2, the assumptions
made and the balance equations are recalled, then the equations
solved for a time step are established. In the subsequent section,
the constitutive equations and the parameters used are given.
Two sets of computations have been studied, one using an isotropic
constitutive equation and another using an anisotropic constitutive
equation. Section 4 describes the initial boundary value problem. It
has to be emphasized that since we are solving a fully coupled
problem, the results depend on time and on the relationship
between permeability and loading velocity. Realistic parameters
have therefore been chosen to simulate a real experiment, since
unrealistic parameters could cause adverse interaction due to the
coupling in the model. The methods used to obtain alternative
solutions to the initial problem are described in Section 5.
The non-uniqueness study using the isotropic constitutive equa-
tion is detailed in Section 6. Similarly, the anisotropic case can be
seen in Section 7. Finally, Section 8 is devoted to results regarding
the pore pressure.

2. Local hydromechanical second-gradient model

Let us first recall the main features of local second gradient
models. An enriched kinematical description of the continuum is
used as proposed by Germain (1973a,b). In addition to the dis-
placement field ui, a second order tensor (the so-called micro kine-
matic gradient) v ij, is introduced. Starting from this model, it is
possible to restrict the kinematics by enforcing the micro
gradient v ij to be equal to the macro gradient @ui=@xj, thus obtain-
ing a local second gradient continuum medium (Mindlin, 1964;
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