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a b s t r a c t

A numerical model based on the Multi-Level Multi-Integration technique has been developed to study
the adhesion between two surfaces. The model provides a self-consistent solution of surface separation
and contact pressure throughout an arbitrary surface contact (including random surface roughness) with
the adhesive interactions governed by the Lennard-Jones potential. Using this approach, the behaviour of
rough surfaces can be assessed with a deterministic description of the surface, and contact stresses
include valid adhesive interactions between all non-contacting surface nodes. The model is first com-
pared to similar analyses from smooth surface models, where good agreement with published results
is obtained. The model is then applied to randomly rough surfaces and shows both the significant impact
of roughness on adhesive behaviour and how individual surface asperities influence the loading–unload-
ing response of adhesive contacts. Lastly, the ability of the model to investigate nano-scale contacts is
assessed through comparisons with atomistic simulations previously published elsewhere. It is clearly
shown that our continuum mechanics-based model, in which an atomistic configuration is represented
by a discretised continuum representation of the surface using a hard-sphere atomic model, is capable
of reproducing many of the features identified through detailed atomistic simulations. The suitability
of the presented model for studying adhesive contacts from the nano-scale to much larger, soft contacts,
where adhesive forces can alter the contact mechanics, is demonstrated. The developed modelling tool
and the algorithms implemented by the authors open the possibility to perform fast and accurate
calculations using a deterministic description of the roughness for a wide variety of contact conditions.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The terms adhesion or adherence are used when two bodies are
stuck, or attracted to one another, and require some force to be
separated. Adhesive forces are the attractive forces that can occur
between two surfaces and may act between any two bodies in
contact, whether or not they experience complete adherence. The
presence of these adhesive forces will alter the mechanics of the
contact to some extent. In many situations of interest, the effect
of these adhesive forces is small compared to that of other contact
forces and, consequently, can be neglected. However, this is not
always the case. Two commonly cited examples are contacts
between compliant (e.g. rubber) materials and contacts between
bodies of nanometer dimensions. In both of these situations, adhe-
sive forces should be accounted for in any valid contact analysis.
Before returning to these examples in detail, it is useful to consider
the physics of adhesive forces.

The Lennard-Jones potential, conventionally used to model sim-
ple interactions between two particles (atoms) in atomistic simu-
lations, is also often used to describe adhesive forces in contact
mechanics. The model is representative of van der Waals forces
and neglects the possible influences of any electrostatic and capil-
lary forces that may exist, but is a sensible representation for many
cases of interest here. The Lennard-Jones potential is commonly
expressed as:

V ¼ 4e
r0
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where rs is the separation of the two particles, r0 is the separation at
which the potential is minimum and e indicates the strength of the
interaction (the minimum potential with respect to the zero poten-
tial at an infinite separation). Differentiation of this potential with
respect to r results in an expression for the force between two par-
ticles. This, in turn, can be integrated over a surface area to provide
an expression that is more conveniently applied to a continuum

http://dx.doi.org/10.1016/j.ijsolstr.2014.03.033
0020-7683/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel./fax: +44 2075947242.
E-mail address: d.dini@imperial.ac.uk (D. Dini).

International Journal of Solids and Structures 51 (2014) 2620–2632

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsolst r

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2014.03.033&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2014.03.033
mailto:d.dini@imperial.ac.uk
http://dx.doi.org/10.1016/j.ijsolstr.2014.03.033
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


description of contact mechanics. Thus the pressure acting between
two infinite, parallel surfaces separated by a distance z is given by:

p ¼ 8w
3z0

z0

z

� �9
� z0

z

� �3
� �

ð2Þ

where z0 is the equilibrium separation, w the work of adhesion. The
work of adhesion indicates the possible strength of adhesive forces
between two materials; it is equal to the work required to separate
two infinite surfaces from equilibrium to an infinite distance and
expressed in units of energy per unit area. This force-separation
curve is shown in Fig. 1, from which a number of observations
can be made. Firstly, there is a maximum value of adhesive pressure
acting between any two materials, whilst the repulsive pressure has
no such limit. Secondly, the attractive force reaches a maximum at a
separation of ð1=3Þ1=6z0, and decreases rapidly as the separation
increases, being just 4% of its peak value at a separation of 4z0.
These two aspects alone can explain the circumstances in which
adhesive forces can and cannot be neglected, irrespective of the
type of contact and the examples given above.

Since the maximum adhesive force has a fundamental limit, the
contribution of adhesion in a contact will be negligible if the
applied pressure is significantly larger than this value. For this rea-
son, the effect of adhesive forces is more evident in contacts for
which the net force is low, which generally applies to smaller con-
tacts, of order nanometers for most engineering materials. The lim-
ited range of surface separation for which adhesive forces are non-
trivial also accounts for observations of low adhesion. For adhesive
forces to be noticeable at the scale of the overall contact, a signif-
icant portion of the surfaces must be separated by distances within
this range. Once again, this requires contacts of nanometer scale,
since values for z0 are of <1 nm. It is also apparent that contact
between rough surfaces will have a greater distribution of surface
gaps, which would suggest that rough surfaces will experience
lower adhesion – a fact well-reported. However, the details of this
phenomenon are perhaps more complex and will be examined in
the later discussion.

Early research of adhesion in the field of contact mechanics
included that of Bradley (1932) but it was in the 1970s that signif-
icant progress was made. Any review of the literature on adhesive
contacts will highlight the acrimonious (Johnson, 1998) disagree-
ment between proponents of two analytical models developed in
this period, the JKR model (Johnson et al., 1971) and the DMT
model (Derjaguin et al., 1975). Both models considered adhesive
contact between a smooth sphere and a flat body, but with differ-
ent approaches and making significantly different assumptions.
The idea that the two models are both correct (or both incorrect)
for different types of contact was put forward by Tabor (1977)
who identified a characteristic parameter, now known as the Tabor
parameter, of which one form is given by:

l ¼ Rw2
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where R is the radius of the sphere and E⁄ is the effective elastic
modulus.

The JKR model was found to be representative only for contacts
with a large value for the Tabor parameter (�5) and the DMT
model for contacts with a small value (�0.1). This is regularly
summarised by stating that the JKR model is suitable for larger,
compliant contacts and the DMT for smaller, stiffer contacts. How-
ever, it must be recognised that neither model gives a full and
accurate account of the contact mechanics; the assumptions made
in each model become more or less valid depending upon the
Tabor parameter, but each model remains an approximation of
the true contact state and some local values for stress or displace-
ment will be inaccurate. Moreover, there exists a transition region
in which neither model is adequate. Muller et al. (1980) made pro-
gress in bridging the two models by removing the problematic
assumptions and developing a self-consistent analysis of adhesive
contact between a sphere and a flat. Greenwood later continued
this approach with similar analyses to a higher level of accuracy
and providing more detail of the method (Greenwood, 1997).
Whilst these models seem to provide the solution to contact
mechanics of smooth adhesive contacts, the complexity and
numerical basis of the models hindered exploitation and alterna-
tive models were developed. Maugis applied a Dugdale-type anal-
ysis (from fracture mechanics to contact mechanics) to the
problem (Maugis, 1992), replacing the true adhesive forces with
a constant adhesive force acting between the surfaces at all points
separated less than a critical distance. Greenwood and Johnson
used a ‘‘double-Hertz’’ analysis to similarly simplify the solution
and provide results suitable for analytical manipulation
(Greenwood and Johnson, 1998). These methods may offer a step
forward in analytical capabilities, but are a step back in accuracy
from the Muller and Greenwood analyses, to which we will return
for the development of our numerical model.

Finite element models for adhesive contact problems have also
been developed, where the contact description obtained using the
Lennard-Jones potential is incorporated into the framework of
nonlinear continuum mechanics (Sauer and Li, 2007; Sauer and
Wriggers, 2009), also in the presence of plasticity (Du et al.,
2007) and within the context of multi-scale simulations, e.g. (Eid
et al., 2011; Luan and Robbins, 2009). Alternative approaches have
also been developed based on the boundary element method,
which incorporates adhesion through energy minimisation
(Carbone and Mangialardi, 2004; Carbone and Mangialardi, 2008).

Most of the models discussed above were developed for or
applied to smooth surface contact, nominally between a sphere
and a flat. Since a common justification for neglecting adhesive
forces is the existence of surface roughness, a model is required
that can account for the effects of surface roughness. An early
and significant analysis was carried out by Fuller and Tabor
(1975). Through a theoretical analysis based on an asperity model
of roughness, it was shown that the adhesive influence could be
described by an ‘‘adhesion parameter’’:

h ¼ E�r3
2

b
1
2Dc

where b is the asperity radius, r the centre line average roughness
and Dc the surface energy (or work of adhesion).

This is, in effect, a ratio of the adhesive force of ‘‘lower’’ asper-
ities to the elastic push of ‘‘higher’’ asperities. The theory was
found to show reasonable agreement when fitted to experimental
results. Fuller and Tabor had used the JKR model on an asperity
level; Maugis repeated the analysis using the DMT model and

Fig. 1. Force-separation relationship for the parallel surface representation of the
Lennard-Jones potential. The dashed line indicates an approximate solution for the
repulsive forces.
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