
The effective elastic moduli of columnar composites made of
cylindrically anisotropic phases with rough interfaces

H.-T. Le a, H. Le Quang a,⇑, Q.-C. He a,b,*

a Université Paris-Est, Laboratoire de Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Bd Descartes, F-77454 Marne-la-Vallée Cedex 2, France
b Southwest Jiaotong University, School of Mechanical Engineering, Chengdu 610031, PR China

a r t i c l e i n f o

Article history:
Received 7 August 2013
Received in revised form 12 February 2014
Available online 13 April 2014

Keywords:
Homogenization
Microstructure
Fiber-reinforced composites
Cylindrical anisotropy
Asymptotic analysis
Rough interfaces

a b s t r a c t

The present work aims to determine the effective elastic moduli of a composite having a columnar micro-
structure and made of two cylindrically anisotropic phases perfectly bonded at their interface oscillating
quickly and periodically along the circular circumferential direction. To achieve this objective, a two-scale
homogenization method is elaborated. First, the micro-to-meso upscaling is carried out by applying an
asymptotic analysis, and the zone in which the interface oscillates is correspondingly homogenized as
an equivalent interphase whose elastic properties are analytically and exactly determined. Second, the
meso-to-macro upscaling is accomplished by using the composite cylinder assemblage model, and
closed-form solutions are derived for the effective elastic moduli of the composite. Two important cases
in which rough interfaces exhibit comb and saw-tooth profiles are studied in detail. The analytical results
given by the two-scale homogenization procedure are shown to agree well with the numerical ones pro-
vided by the finite element method and to verify the universal relations existing between the effective
elastic moduli of a two-phase columnar composite.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

An important class of composites, referred to as columnar com-
posites, have the microstructure such that their properties are
homogeneous along one direction but heterogeneous in its trans-
verse plane. Within the class of columnar composites fall, for
example, porous media with parallel cylindrical pores, fibrous
composites consisting of a homogeneous matrix reinforced by
aligned parallel continuous homogeneous fibers, or polycrystalline
aggregates formed of columnar monocrystals. The microstructure
of columnar composite is much more complicated than the one
of layered composites but simpler than that of particulate
composites.

Due to the practical importance and technological interest of
columnar composites, a great number of micromechanical models
have been proposed to determine the effective mechanical
properties of them and, in particular, those of fiber-reinforced

composites. These models include diluted, self-consistent, Mori–
Tanaka, differential, and Ponte Castaneda–Willis estimation
schemes. They equally comprise the generalized self-consistent
model (GSCM) initiated by Van der Poel (1958), improved by
Smith (1974, 1975) and completed by Christensen and Lo (1979).
It is also very useful to mention the composite cylinder assemblage
(CCA) model introduced first by Hashin and Rosen (1964) and
recast then by Hashin (1972, 1979) on the basis of the concept of
neutral inclusions. All these micromechanical models providing
closed-form estimates or exact results for the effective properties
of columnar composites require using Eshelby’s solution for a
cylindrical inclusion of circular or elliptic cross-section in an infi-
nite homogeneous medium (Eshelby, 1957; Eshelby, 1961) or the
solution for a cylindrical inhomogeneity of circular cross-section
coated concentrically by a circular cylindrical shell. For this reason,
once the interface between two phases of a columnar composite
can no longer be considered as smooth but rough, none of the
aforementioned micromechanical models is still valid.

In a variety of situations and for different reasons, the consider-
ation of rough surfaces and interfaces is unavoidable. More funda-
mentally, a surface or interface which is smooth at a given scale
turns out often to be rough at a smaller scale. In the physics and
mechanics of solids or fluids, a great number of studies have been
dedicated to rough surfaces and interfaces (see, e.g., Zaki and
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Neureuther, 1971; Waterman, 1975; Cheng and Olhoff, 1981;
Talbot et al., 1990; Belyaev et al., 1992, 1998; Abboud and
Ammari, 1996; Achdou et al., 1998; Bao and Bonnetier, 2001;
Singh and Tomar, 2007, 2008). Two approaches have been pro-
posed for the investigation of rough interfaces. When the ampli-
tude of the roughness of a rough interface is much smaller than
its wavelength (or period), the approach based on an appropriate
perturbation technique is employed (see e.g., Sato et al., 2012
and the relevant references cited therein). If the wavelength is
much smaller than the amplitude, the homogenization approach
is justified and efficient (see, e.g., Kohler et al., 1981; Brizzi, 1994).

The present work addresses the problem of determining the
effective elastic moduli of a columnar composite made of two
cylindrically orthotropic phases between which the circular cylin-
drical interface oscillates quickly and periodically along the circu-
lar circumferential direction. To solve this problem, a two-scale
homogenization method is developed. First, performing the
micro-to-meso upscaling by an asymptotic analysis, the zone in
which the interface undulates is homogenized as an equivalent
interphase. Remarkably, the elastic properties of this interphase
can be analytically and exactly determined in a compact way. Sec-
ond, carrying out the meso-to-macro upscaling by using the com-
posite cylinder assemblage model, closed-form expressions are
derived for the effective elastic moduli of the composite which is
assumed to be transversely isotropic at the macroscopic scale.
Two rough interface configurations are investigated in details. In
the first configuration, the cross-section of the rough interface pre-
sents a comb profile. The second configuration corresponds to the
case where the cross-section of the rough interface exhibits a saw-
tooth profile. The corresponding analytical results obtained by the
two-scale homogenization method are finally compared with the
numerical results provided by the finite element method and
checked against the universal relations which must be verified by
the effective elastic moduli of a two-phase columnar composite.
The comparison and check made confirm the validity of the pro-
posed method.

The paper is organized as follows. In Section 2, the setting of the
problem under investigation is specified. In particular, the local
governing equations, the description of the rough interface and
the final macroscopic constitutive equation are given. Section 3 is
dedicated to carrying out an asymptotic analysis so as to homoge-
nize a rough interface zone as an equivalent interphase which may
be still heterogeneous along the radial direction but becomes
homogeneous on the cylindrical surface normal to the radial direc-
tion. In particular, we prove that the elastic moduli of the equiva-
lent interphase correspond to those obtained by the
homogenization of a layered composite whose layering direction
coincides with the undulation one. In Section 4, the effective elastic
moduli of the composite under consideration are exactly deter-
mined by using the composite cylinder assemblage model for the
resulting matrix/interphase/fiber composite. In Section 5, the
derived analytical results are compared with the corresponding
numerical results obtained by the finite element method and
checked with respect to the universal relations existing between
the effective elastic moduli. Finally, a few concluding remarks are
given in Section 6.

2. Local governing relations and rough interfaces

In a three-dimensional Euclidean space R3, consider a compos-
ite material consisting of two phases and exhibiting a columnar
microstructure. The two constituent phases of the composite under
consideration are assumed to be linearly elastic, cylindrically
anisotropic and perfectly bonded together across their interface.
More precisely, relative to the cylindrical coordinate system (r, h,

z) associated with a cylindrical orthonormal basis fer ; eh; ezg with
the unit vector ez orientated along the cylinder axis, the compo-
nents rij of the Cauchy stress tensor r are related to the compo-
nents eij of the infinitesimal strain tensor e by

rij ¼ Lijpqepq; ð1Þ

where Lijpq are the components of the fourth-order elastic stiffness
tensor L and have the usual symmetries Lijpq ¼ Ljipq ¼ Lpqij. By
hypothesis, the phases are cylindrically anisotropic, so that all the
elastic moduli Lijpq are independent of the cylindrical coordinates
ðr; h; zÞ. In other words, the phases are cylindrically homogeneous
but heterogeneous with respect to the Cartesian coordinates
ðx; y; zÞ associated with an orthonormal basis fex; ey; ezg.

In the cylindrical coordinate system, using the two-to-one sub-
script identification rr � 1; hh � 2; zz � 3; hz � 4; zr � 5 et
rh � 6, the cylindrically anisotropic elastic law (1) can be written
in the following matrix form:
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In this work, we are interested in the case where each phase
belongs to one of the isotropic, cubic, transversely isotropic, tetrag-
onal and orthotropic symmetric classes. These five symmetry clas-
ses under consideration are now specified as follows: (i) if
L11; L22; L33; L12; L13; L23; L44; L55 and L66 are independent, the
constitutive law (2) is cylindrically orthotropic; (ii) when
L11; L33; L12; L13; L44 and L66 are independent, L11 ¼ L22; L13 ¼ L23

and L44 ¼ L55, the relation (2) becomes cylindrically tetragonal;
(iii) in the case where L11; L33; L12; L13 and L44 are independent,
L11 ¼ L22; L13 ¼ L23; L44 ¼ L55 and L66 ¼ 1

2 ðL11 � L12Þ, Eq. (2) is of
cylindrically transverse isotropy; (iv) if L11; L12 and L44 are indepen-
dent but L11 ¼ L22 ¼ L33 and L23 ¼ L12 ¼ L13; L44 ¼ L55 ¼ L66, the
material described by (2) is cylindrically cubic; (v) lastly, when
L11 and L12 are independent, L11 ¼ L22 ¼ L33; L23 ¼ L12 ¼
L13; L44 ¼ L55 ¼ L66 ¼ 1

2 ðL11 � L12Þ, then the material characterized
by (2) is isotropic.

In the cylindrical coordinates, the components of the infinitesi-
mal strain tensor e are related to the displacement field
u ¼ ður ;uh;uzÞ by

e1 ¼ ur;r ; e2 ¼
1
r

uh;h þ urð Þ; e3 ¼ uz;z; e4 ¼
1
2

uh;z þ
1
r

uz;h

� �
;
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1
2
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1
2

uh;r þ
1
r

ur;h �
1
r

uh

� �
: ð3Þ

The Cauchy stress tensor field r must verify the following
motion equations:

r � rþ b ¼ q€u ð4Þ

where b ¼ ðbr; bh; bzÞT is the body force vector, q is the volumic mass
density and a superposed dot denotes the differentiation with
respect to the time t.

Next, by substituting (1) into (4) and by taking into account (3),
the motion equation (4) can be rewritten in the following compact
form

CðpkÞu;k

� �
;p
þ 1

r
Cð1kÞu;k þ b ¼ q€u; ð5Þ

where

ð�Þ;1 ¼ ð�Þ;r ; ð�Þ;2 ¼
1
r
ð�Þ;h; ð�Þ;3 ¼ ð�Þ;z ð6Þ
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