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a b s t r a c t

A cohesive zone model for two-dimensional adhesive contact between elastic cylinders is developed by
extending the double-Hertz model of Greenwood and Johnson (1998). In this model, the adhesive force
within the cohesive zone is described by the difference between two Hertzian pressure distributions of
different contact widths. Closed-form analytical solutions are obtained for the interfacial traction,
deformation field and the equilibrium relation among applied load, contact half-width and the size of
cohesive zone. Based on these results, a complete transition between the JKR and the Hertz type contact
models is captured by defining a dimensionless transition parameter l, which governs the range of
applicability of different models. The proposed model and the corresponding analytical results can serve
as an alternative cohesive zone solution to the two-dimensional adhesive cylindrical contact.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Adhesive forces that act between contacting bodies play a key
role in determining the mechanical behavior of small-scale sys-
tems. For instance, adhesive force can induce significant local
stress in atomic force microscopy (AFM) which can therefore result
in substantial wear and tip degradation (Liu et al., 2010). With
increasing usage of micro-scale components and devices, it is
imperative to obtain a better understanding of the contact behav-
ior considering adhesive forces.

Since Hertz’s seminal work (1882) on the unilateral contact of
elastic spheres, numerous studies have been conducted on the
adherence of spherical bodies. Bradley (1932) examined the attrac-
tive force between two rigid spheres by considering the molecular
interactions. Later on, two famous models for adhesive contact
between elastic spheres were proposed by Johnson et al. (1971)
(JKR model) and Derjaguin et al. (1975) (DMT model), respectively.
However, the magnitudes of the pull-off force predicted by the JKR
and DMT models are quite different. Tabor (1977) then compared
the two models and showed that JKR and DMT models represent
two limiting cases of adhesive contact and their ranges of validity
can be assessed by a dimensionless parameter (i.e., Tabor parame-
ter) (Greenwood, 1997; Johnson and Greenwood, 1997; Barthel,
2008). To be more specific, the JKR model works well for soft mate-
rials with relatively high surface energy while the DMT model is

more appropriate for hard solids with low surface energy. The first
cohesive zone model which can allow for the transition between
the JKR and DMT models was established by Maugis (1992). In this
model (the so-called Maugis–Dugdale (M–D) model), the adhesive
stress acting over the cohesive zone is assumed to be constant (i.e.,
Dugdale (1960)), which facilitates the derivation of analytical solu-
tions. Soon afterwards, this model was also extended to describe
the noncontact case (Kim et al., 1998).

In parallel with the M–D model, Greenwood and Johnson (1998)
put forward an alternative cohesive zone model, known as the
double-Hertz (D-H) model, which is also applicable to arbitrary
values of Tabor parameter. In this model, the adhesive force within
the cohesive zone is described by the difference between two
Hertzian pressure distributions of different contact radii. It was
found that results obtained by the D-H model are very close to
those from the M–D model. However, the D-H model is more ana-
lytically tractable than the M–D model since the corresponding
analysis relies solely on the classical Hertzian solutions. For this
reason, the D-H model is often adopted to study the adhesion
behavior of complex contact systems involving rough contact sur-
faces (Persson, 2002; Zhang et al., 2014), viscoelastic materials
(Haiat et al., 2003) and functionally graded elastic solids (Jin
et al., 2013). Recently, the D-H model was reconsidered in a slightly
different context using an auxiliary function method (Barthel,
2012).

The above advances in contact mechanics of three-dimensional
spherical bodies laid a solid foundation for the study of two-dimen-
sional cylindrical contact systems. Barquins (1988) developed the
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JKR-type solutions for elastic cylinders and verified it experimen-
tally. With use of Barquins’s theory, Chaudhury et al. (1996) pre-
dicted the surface and adhesion energies of elastomeric
polydimethylsiloxane (PDMS) successfully. The two-dimensional
JKR model was also extended to the non-slipping case with the fric-
tionless contact assumption relaxed (Chen and Gao, 2006a; 2007)
and the conforming contact case with the half-plane assumption
relaxed (Sundaram et al., 2012).

The above mentioned JKR-based models, however, do not con-
sider the adhesion forces outside the contact area and therefore
are only applicable to soft bodies with relatively large Tabor
parameters. For general material properties, Baney and Hui
(1997) proposed the first cohesive zone model for cylindrical con-
tact in the framework of M–D model, Morrow and Lovell (2005)
then extended Baney and Hui’s theory to the case where the sur-
faces are not within intimate contact but are within the range of
adhesive interaction. The same two-dimensional M–D analysis
was also performed by Johnson and Greenwood (2008) indepen-
dently, with emphasis on the pull-off force. Chen and Gao
(2006b) presented an analogous M-D model of a cylinder in non-
slipping adhesive contact with a stretched substrate. Furthermore,
based on the two-dimensional M-D model, Sari et al. (2005) also
investigated the sliding and rolling motion of a cylinder on the sub-
strate subjected to combined normal and tangential forces.

The present study is aimed to extend the three-dimensional
double-Hertz model of Greenwood and Johnson (1998) to a plane
strain problem, with emphasis on establishing a set of simple ana-
lytical solutions which are applicable for a full range of Tabor
parameters. These solutions can not only describe a complete
transition between the two-dimensional JKR and the Hertz type
contact models, but also exhibit as equally effective as the two-
dimensional M–D model.

The rest of the paper is organized as follows. We first extend the
double-Hertz model to the cylindrical contact system in Section 2.
The main analytical results are then presented in dimensionless
form in Section 3. Section 4 discusses the reduction of the proposed
model in two limiting cases of small and large cohesive zones. The
traction-separation relation within the cohesive zone is examined
in Section 5. Finally, some concluding remarks are provided in
Section 6.

2. Two-dimensional double-Hertz model

Fig. 1a shows the adhesive contact between two dissimilar elas-
tic cylinders with parallel axes under a prescribed load P (with unit
N/m and negative when tensile). Contact occurs over a rectangular
region of width 2a. In fact, if the tangential tractions are neglected,
this problem is equivalent to the plain strain frictionless contact
problem between a rigid cylinder of radius R and an elastic half-
plane with a effective Young’s modulus E⁄, where

1=R ¼ 1=R1 þ 1=R2 ð2:1Þ

and

1=E� ¼ ð1� m2
1Þ=E1 þ ð1� m2

2Þ=E2; ð2:2Þ

respectively. In Eqs. (2.1) and (2.2), R1, R2 are the radii, m1, m2 are the
Poisson radios and E1, E2 are the Young’s moduli of the contacting
cylinders, respectively (Johnson, 1985). For subsequent analytical
treatment, as shown in Fig. 1b, a Cartesian coordinate system (x,
z) is set up with origin at the center of the contact zone and z direc-
tion pointing into the half-plane. The distribution of surface traction
consists of two terms: the Hertz pressure pH acting on a contact
region of width 2a and the adhesive tension pA acting on an interac-
tion zone of width 2c. The noncontact regions bounded by half-
widths a and c (i.e., a 6 jxj 6 c; z ¼ 0) are known as the cohesive

zones. Since the present problem is symmetry with respect to the
z-axis, we only quote the equations for x P 0 in the following
analysis.

In the absence of adhesive force, the Hertz-type pressure distri-
bution between a rigid cylinder and an elastic half-plane is given
by (Johnson, 1985)

pðxÞ ¼ E�

2R
ða2 � x2Þ1=2

; jxj 6 a ð2:3Þ

which corresponds to a prescribed load

P ¼ pa2E�

4R
ð2:4Þ

The derivative of the surface normal displacement with respect to x
can be expressed as

@uz

@x
¼ � x

R
; 0 6 x 6 a; ð2:5aÞ

@uz

@x
¼ � 2

pE�

Z a

�a

pðsÞ
x� s

ds ¼ � x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2
p

R
; x P a; ð2:5bÞ

According to Greenwood and Johnson (1998), the essential idea
behind the proposed two-dimensional double-Hertz model is to
represent the adhesive tensile traction by resorting to the differ-
ence of two Hertzian pressure distributions, that is,

Fig. 1. (a) Schematics of adhesive contact between two elastic cylinders. The
constants (E1, m1) and (E2, m2) denote Young’s moduli and Poisson’s ratios of the two
cylinders. (b) A rigid cylinder in frictionless adhesive contact with an elastic half-
plane under a normal load P (negative when tensile). The distribution of surface
traction consists of two terms: the Hertz pressure pH acting on the contact zone of
width 2a and an adhesive traction pA acting on the interaction zone of width 2c.
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