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a b s t r a c t

Half-space problems of a cubic piezoelectric material subjected to anti-plane deformation and in-plane
electric field are studied. A general solution in terms of the integration of the boundary data prescribed
over the surface of the semi-infinite domain is derived. Based on the general solution, the problem of a
concentrated line force acting on the surface is treated and ensuing electromechanical response is deter-
mined. The solution to the problem of a screw dislocation in the half-space is also obtained, and the result
is exploited to study a sub-surface crack problem by simulating the crack as a continuous distribution of
dislocations.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric materials are widely used in various fields of engi-
neering, ranging from simple pressure transducers and motion
accelerometers to complicated integration systems such as smart
structures and microelectromechanical systems (MEMS). They
can act simultaneously as sensors and actuators, and therefore
may encounter complex electromechanical loadings. Thus, it is
important to understand how these materials response to exter-
nally applied loads. Defects in them play a major role in determin-
ing the strength and reliability of devices made of these materials.
Intensive research has resulted in numerous articles on this topic
and interested readers are referred to review articles for a long list
of references (Zhang et al., 2002; Zhang and Gao, 2004; Kuna,
2010). After perusing these publications, it is found that most of
exact and explicit solutions are restricted to the class with hexag-
onal symmetry; few explicit results are available for other classes.
Recently attempts have been made to fill this void of information
by solving some defect related problems in cubic piezoelectric
crystals. The piezoelectric potential induced by a screw dislocation
in cubic crystals was analyzed in Chiang (2012) and a more com-
plete account was given in Chiang (2013a). Crack problems were
solved in Chiang (2013b) where some useful solutions have been
obtained. To continue the pursuit of this goal, analytic solutions
of some half-space problems of cubic piezoelectric crystals are de-
rived in this article. The present results are exact and explicit, and
therefore may shed some light on this complicated problem.

The paper is organized as follows. In the next section, the
governing equations for the anti-plane deformation coupled with
in-plane electric field in a cubic piezoelectric medium are briefly
reviewed. In Section 3, by the method of analytic function of com-
plex variables, solutions of half-space problems are derived for
two electric boundary conditions specified on the surface of the
semi-infinite region. To illustrate the general solution, a concen-
trated line force acting on the surface is specifically treated and
ensuing electromechanical fields are explicitly shown in Section 4.
The fundamental solution concerning a screw dislocation beneath
the free surface is also solved in this section. In Section 5, a
sub-surface crack problem is solved by simulating the crack as
a continuous distribution of dislocations.

2. Governing equations and general solutions

Since the material has a cubic symmetry, it is advantageous to
take a coordinate system as shown in Fig.1 that the x-axis is in
the [100] direction and the y-axis point to [010] direction. The
problem under consideration is an out-of-plane shear coupled with
in-plane electric field; as shown earlier that for the present prob-
lem the displacement w in the direction of z-axis and the electric
potential U must satisfy (Chiang, 2012, 2013a,b)
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where C44, e14 and j11 are the elastic constant, piezoelectric con-
stant and permittivity of the material. By eliminating U from these
two equations, it is found that
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If the displacement w(x, y) is assumed to have the form of
w(x + ly), then l must satisfy the following characteristic equation
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noted that l1l2 ¼ �1 (or s1s2 ¼ 1).
Since the displacement must be a real function, it is concluded

that the general solution of Eq. (3) is

w ¼ 2Re F1ðz1Þ þ F2ðz2Þ½ � ð5Þ

where Re[] denotes the real part of a complex function; F1 and F2 are
some arbitrary functions with z1 ¼ xþ l1y and z2 ¼ xþ l2y. On the
other hand, since the electric potential U must satisfy Eqs. (1) and
(2), it is concluded that
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can be written as

U ¼ 2Re k1F1ðz1Þ þ k2F2ðz2Þ þ a1z1 þ a2z2 þ b½ � ð7Þ

Eqs. (5) and (7) are the general solution that satisfy the governing
equations of the problem. Furthermore, when the displacement
and the electric potential of a specific problem have been deter-
mined, the electric field, stress and electric displacement can be
found by the following equations
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From these equations, it can be seen that the influence of the
material constants on the solution is through the complex param-
eters l1, l2, k1 and k2. The material constants and associated com-
plex parameters are shown in Tables 1 and 2 for two typical cubic
piezoelectric crystals: Bismuth Germanate and Bismuth Germa-
nium Oxide (Auld, 1973).

3. Solutions to half-space problems

Consider a half-space domain which occupies the lower part of
y = 0 surface in the coordinates as shown in Fig. 1. A variety of
boundary conditions can be specified on the surface. In this section
the solutions are given for the following two types of boundary
conditions: on y = 0, (A) syz = S⁄(x), U = U⁄(x), and (B) syz = S⁄(x),
Dy = D⁄(x) as shown in Fig. 2. Electric boundary condition (A) is in-
tended for the case that the electric potential across the surface of
piezoelectric crystals can be imposed or measured. On the other
hand the electric boundary condition (B) is intended for applica-
tions where the surface is in contact with conductors of known
charge density or in contact with dielectrics of known electric
induction normal to the surface.

Before deriving the solution, it is first noted that for an analytic
function f which vanishes at infinity has the following property,
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where z is in the lower half-space ðy 6 0Þ, and f ðzÞ ¼ f ðzÞ. A bar over
a variable or a function denotes its complex conjugate. The follow-
ing derivation of the solution is parallel to that in Lekhnitskii (1968)
which is a generalization of the method used in Muskhelishvili
(1963).

Fig. 1. Rectangular coordinates and polar coordinates.

Table 1
Material constants and electromechanical coupling parameter h of Bismuth Germ-
anate (Bi4Ge3O12) and Bismuth Germanium Oxide (Bi12GeO20).

Material C44 (1010 N/m2) e14 (C/m2) j11(10�12 F/m) h

Bi4Ge3O12 4.36 0.0376 142 0.00022835
Bi12GeO20 2.55 0.99 336 0.114391

Table 2
Material parameters of Bismuth Germanate and Bismuth Germanium Oxide. Note
that l1 = is1, l2 = is2, k1 = ik and k2 = �ik.

Material s1 s2 k

Bi4Ge3O12 1.0152254 0.9850029 �1.75226 � 1010

Bi12GeO20 1.3938641 0.7174300 �8.71165 � 109

Fig. 2. Two types of boundary conditions imposed on the surface of semi-infinite
region.
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