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a b s t r a c t

In the area of homogeneous, isotropic, linear elastic rough surface normal contact, many classic statistical
models have been developed which are only valid in the early contact when real area of contact is infin-
itesimally small, e.g., the Greenwood–Williamson (GW) model. In this article, newly developed statistical
models, built under the framework of the (i) GW, (ii) Nayak–Bush and (iii) Greenwood’s simplified elliptic
models, extend the range of application of the classic statistical models to the case of nearly complete con-
tact. Nearly complete contact is the stage when the ratio of the real area of contact to the nominal contact
area approaches unity. At nearly complete contact, the non-contact area consists of a finite number of the
non-contact regions (over a finite nominal contact area). Each non-contact region is treated as a mode-I
‘‘crack’’. The area of each non-contact region and the corresponding trapped volume within each non-
contact region are determined by the analytical solutions in the linear elastic fracture mechanics, respec-
tively. For a certain average contact pressure, not only can the real area of contact be determined by the
newly developed statistical models, but also the average interfacial gap. Rough surface is restricted to the
geometrically-isotropic surface, i.e., the corresponding statistical parameters are independent of the
direction of measurement. Relations between the average contact pressure, non-contact area and average
interfacial gap for different combinations of statistical parameters are compared between newly devel-
oped statistical models. The relations between non-contact area and average contact pressure predicted
by the current models are also compared with that by Persson’s theory of contact. The analogies between
the classic statistical models and the newly developed models are also explored.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Elastic rough surface contact models have been developed for
more than 50 years since the first one created by Archard (1957).
Because of the complexity of the boundary conditions on the con-
tact interfaces, i.e., the surface traction distribution and surface
displacement field, the elastic rough surface contact problem can-
not be completely solved analytically except for the case when
contact becomes complete.1 The statistical based model is one of
the approximate models and was first introduced by Greenwood
and Williamson (1966). This is the first model combining the
random process with the elastic contact model (Hertzian spherical
contact model). Nayak, 1971 modeled the rough surface as a two-
dimensional (2D) isotropic, Gaussian, random process, which is re-
ferred to as Nayak’s random theory. Bush and Thomas, 1982 applied
Nayak’s random theory in the elastic rough surface contact model
(Nayak–Bush model) by assuming that the asperities are axisymmet-
ric. Bush et al., 1975 developed, up till now, the most complete sta-
tistical model (BGT model) based on Nayak’s random theory.

Utilization of the Hertzian elliptic contact model complicates the
BGT model. Greenwood, 2006 reduced the complexity of the BGT
model by introducing an mildly Hertzian elliptic contact model
which is only valid for the elliptic asperities with similar principle
curvatures. This model is referred to as Greenwood’s simplified elliptic
model. A good agreement can be found between the BGT model and
Greenwood’s simplified elliptic model (Greenwood, 2006). Those
statistical models, discussed above, are now referred to as the classic
statistical models. One of the main assumptions adopted in the
classic statistical models is that the interactions between the neigh-
boring contacting asperities, due to the elasticity of the substrate, are
ignored, which limits the application of the classic statistical models
within the light load (real area of contact � nominal contact area)
range.

Nearly all the newly developed statistical models (Bush et al.,
1976; O’Callaghan and Cameron, 1976; Francis, 1977; McCool and
Gassel, 1981) after the Greenwood and Williamson (GW) model re-
strict their application within the case of early contact where the real
area of contact is infinitesimally small. Few attempts have been
made to introduce the asperity interaction (equivalently, the elastic-
ity of the substrate) in the classic statistical model (Zhao and Chang,
2001, e.g., Ciavarella et al., 2008). Nearly complete contact is defined
as the stage where isolated non-contact regions (easily visualized as
‘‘islands’’) of infinitesimally small areas are surrounded by the
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contact area (likewise visualized as the ‘‘sea’’) when the average con-
tact pressure is extremely high. The systematic study of nearly com-
plete contact has received less attention compared to the early
contact case even though it has many applications, such as the leak-
age of static seals, electrical contacts and tire/road interaction.

Johnson et al. (1985) derived the asymptotic solutions of the
rough contact problem of an elastic half-space with slightly (bi-)

sinusoidal waviness in contact with a rigid flat at nearly complete
contact. They treated the gaps between the deformed waviness
and the rigid flat as mode-I ‘‘cracks’’. Based on the concept of the
stress intensity factor (SIF) in fracture mechanics, they obtained
the approximate analytic solution to the relation between the
average contact pressure and non-contact area within a complete
period.

Nomenclature

A real area of contact, i.e., size of domain Xc

A� contact ratio, A� ¼ A=An

An nominal contact area, i.e., the size of X
C rigid body displacement on the plane z ¼ 0 of an elastic

half-space
CðrÞ circumference of an ellipse
C1;C2 constants, C1 ¼ a= 2a� 3ð Þ and C2 ¼ C1

12
a
� �1=2

E Young’s modulus of equivalent rough surface
E½�� average value of the process inside the square bracket

E� effective material modulus, 1
E� ¼

1�m2
1

E1
þ 1�m2

2
E2

Ei; i ¼ 1;2 Young’s modulus of rough surface 1 and 2
KI stress intensity factor of a mode-I crack
P total contact load over the domain X
P� dimensionless contact load at early contact,

P� ¼ P=ðE�AnÞ
R average radius of curvature of the asperities
S power spectrum density of a rough surface
V variance of the ‘‘pressure surface’’, p ¼ pcðx; yÞ, V ¼

ffiffiffiffiffiffiffi
mp

0

q
X nominal contact domain
Xc;Xnc contact and non-contact domains
U probability density function of the asperity height of a

rough surface (or ‘‘pressure surface’’)
a bandwidth parameter: a ¼ m0m4

m2
2

ap
1 dimensionless parameter ap

1 ¼
mp

0ffiffiffiffiffi
mp

2

p 1
E�r

A non-contact area, i.e., size of domain Xnc

A� non-contact ratio, i.e., A� ¼ 1� A�

An area of each non-contact region
Vi trapped volume within a non-contact region
�g average interfacial gap
�g� dimensionless average interfacial gap, �g� ¼ �g=r
�p average pressure over the domain X
�p� dimensionless average pressure, �p� ¼ �p=rp

s in modified

GW model and �p� ¼ �p=
ffiffiffiffiffiffiffi
mp

0

q
in modified Nayak–Bush

and Greenwood’s simplified model
�pc critical value of the average pressure across which

rough contact becomes complete
J Jacobian
g peak density in a random process ½1=m2�
j1, j2 half of the positive maximum and minimum principle

‘‘curvatures’’ of the asperity of the ‘‘pressure surface’’,
p ¼ �pcðx; yÞ [Pa=m2]

j�1;j
�
2 dimensionless principle curvatures of the local asperi-

ties, j�i ¼ ji=
ffiffiffiffiffiffiffi
m4
p

; i ¼ 1;2
jm mean (positive) curvature
F , F�1 Fourier transform and inverse Fourier transform opera-

tors
m Poisson’s ratio of equivalent rough surface
mi; i ¼ 1;2 Poisson’s ratio of rough surface 1 and 2
r root mean square roughness of the surface
rs root meant square of the asperity height
erfcðÞ complementary error function
erfðÞ error functioneAi tensile stress area, i.e., the area of tensile stress in

p2ðx; yÞ within each non-contact region

n; f new coordinates, n ¼ x0, f ¼
ffiffiffiffi
j2
j1

q
y0

ni; i ¼ 1; . . . ;6 random variables in the Nayak’s random theory
an; bn semi-major and semi-minor axes of the elliptic non-

contact region, An

d surface separation between mean levels of two nomi-
nally flat rough surface or between mean level of an
effective rough surface and a rigid flat

d� dimensionless surface separation, d� ¼ d=rh
s in original

GW model and d� ¼ d=
ffiffiffiffiffiffiffi
mh

0

q
in original Nayak–Bush

and Greenwood’s simplified model
e eccentricity
gðrÞ crack opening displacement of an axisymmetric mode-I

crack
gðx; yÞ gap distribution between the contact interfaces
h height of the equivalent rough surface, h ¼ h1 þ h2
hi; i ¼ 1;2 height of rough surface 1 and 2, E½hi� ¼ 0
m distance between mean level and mean asperity

level
mi; i ¼ 0;2;4 spectral moments of an isotropic rough surface
p normal contact pressure distribution acting on the

boundary, z ¼ 0, of a half-space
p1 contact pressure distribution at complete contact (see

Eq. (9))
p2 contact pressure distribution acting only on the non-

contact regions (see Eq. (10))
pc normal traction distribution at complete contact where

uzðx; yÞ ¼ hðx; yÞ
qx, qy tangential traction distributions in the x and y directions

on the boundary, z ¼ 0, of a half-space

r polar coordinate, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ f2

q
s semi-sum of the dimensionless principle curvatures of

the local asperities: j�1 and j�2, i.e., s ¼ �ðj�1 þ j�2Þ
u dimensionless (negative) mean curvature, u ¼ �jm=

ffiffiffiffiffiffiffi
m4
p

ui; i ¼ x; y; z surface displacement fields due to the given traction
distributions on the boundary, z ¼ 0, of a half-space

w amplitude of the frequency vector w
wx;wy frequency components in the x and y directions
x0; y0 local coordinates of each non-contact region centered

about its centroid (see Fig. 6)
x; y; z Cartesian coordinates
E complete elliptic integral of second kind
w frequency vector contains the frequencies in the x and y

directions

Superscript
h for the rough surface
p for the ‘‘pressure surface’’
* dimensionless symbol, except for the effective material

modulus, E�

Abbreviation
GW Greenwood and Williamson model
BGT Bush, Gibson and Thomas model
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