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a b s t r a c t

The load-bearing capacity of structures can be influenced by variations in parameters, such as initial geo-
metric defects, multi-parameter loadings, material specifications and temperature. This paper aims to
introduce a new formulation to trace the stability boundaries of two-parameter elastic structures. The
proposed procedure can find a set of critical points, both limit and bifurcation ones, via a modified New-
ton’s method. In the authors’ formulation, the residual force is set to zero, and a critically constraint is
satisfied simultaneously. Numerical examples presented in this paper demonstrate the efficiency of
the suggested method.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In many structural systems, parameters, such as initial geomet-
ric defects, extra loadings and changes in temperature can signifi-
cantly influence the load carrying capacity. The equilibrium path
and, subsequently, the buckling strength are usually sensitive to
these parameters (or imperfections). A broad class of structures,
like columns, trusses, shallow arches and thin-walled structures
are examples of such systems (Ikeda and Ohsaki, 2007; Parente
et al., 2008). Finding a precise relationship between control param-
eters and the final strength of structures subjected to external
loadings can be helpful for both analysts and structural designers
to have better understanding about the structural behavior. In
mechanical–structural problems, it is common to assume that
the magnitude of imperfections varies through one or more control
parameters (Huseyin, 1975). Subsequently, the equilibrium equa-
tions and the critical load(s) are dependent on these parameters.

Critical points (e.g. limit, simple bifurcation and multi-bifurca-
tion points) play an important role in the post-buckling behavior
of structures. Along tracing the equilibrium path, finding the type
and the exact locus of such points is needed for choosing a suitable
numerical strategy. In the literature, several techniques for the cal-
culation of equilibrium paths are extensively discussed (Crisfield,
1983; Forde and Stiemer, 1987; Riks, 1979). Most of these numer-
ical techniques are based on Newton’s method, which gives a
number of discrete equilibrium points through an incremental–
iterative procedure (Chen and Blandford, 1993; Rezaiee-Pajand

et al., 2009; Widjaja, 1998). Many of these techniques become
divergent or choose a wrong path when they reach critical points.
Previously, many efforts have been made by researchers in the area
of critical points’ detection (Battini et al., 2003; Seydel, 1979;
Wriggers et al., 1988). Since the tangent stiffness matrix becomes
singular at these points, most of the proposed methods use this
characteristic as the critically constraint, which is added to the
governing equations, and apply an iterative procedure to obtain
the supposed critical point (Fujii and Ramm, 1997; Kouhia et al.,
2012; Wriggers and Simo, 1990).

The final strength of a structure can be affected by control
parameters (or imperfections), such as initial geometric defects,
load imperfection and thermal stresses (Ohsaki and Ikeda, 2009;
Parente et al., 2006). By simultaneously perturbing the equilibrium
equations and the critically constraint in the vicinity of the critical
point, the sensitivity analysis of critical states can be investigated
(Godoy and Banchio, 2001; Thompson and Hunt, 1973; Wu and
Wang, 1997). Although this type of method is compatible with
the finite element coding, it needs the calculation of high-order
derivatives of the tangent stiffness matrix to obtain a better result.
Furthermore, the range of validity is restricted in the vicinity of the
critical point. The Lyapunov–Schmidt–Koiter asymptotic approach
is another technique with similar advantages and disadvantages. In
this process, the governing equations are regularized by a pertur-
bation parameter (Casciaro et al., 1998; Casciaro et al., 1992,
2009; Koiter, 1945). There are also a number of techniques based
on incremental–iterative procedures that directly obtain the
critical point(s) of parameterized (imperfect) structures (Eriksson
et al., 1999; Moghaddasie and Stanciulescu, 2013a; Wu, 2000). In
such methods, the equilibrium equations and the critically
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constraint are simultaneously convinced via an iterative proce-
dure. The superiority of these schemes in comparison with pertur-
bation approaches is that errors will not increase for large values of
the parameter(s).

This paper introduces a new formulation to find the relationship
between the buckling strength of non-linear elastic structures and
the variation in a control parameter. In this way, an incremental–
iterative procedure is used to simultaneously set the residual force
to zero and convince the critical constraint. This constraint deals
with the critical eigenvector of the tangent stiffness matrix. In addi-
tion, the authors propose a formula to update the spherical arc-length
constraint in each increment to improve the convergence. The sug-
gested technique is based on Newton’s method, and leads to a
set of discrete critical point. Each point is directly computed from
the previous one. Consequently, the suggested approach is suitable
for conservative systems (e.g. elastic structure), which the locus of
critical points are independent of the relative equilibrium paths.
The suggested method includes the following features all together:
(a) the mode change in buckling does not lead to divergence; (b) errors
will not increase for large magnitudes of control parameters; (c) both
limit and simple bifurcation points can be detected; (d) the conver-
gence properties are not sensitive to variations in the stiffness matrix;
and (e) since each critical point is directly calculated from the previous
one, globalization techniques (which are necessary for the computa-
tion of the critical point from the unloaded state) are not needed to
use for structures with large pre-critical displacements. Applying a
globalization technique is crucial when the current state is far from
the desired critical point, and make the method convergent (see,
for example, (Dennis Jr. and Schnabel, 1996)).

In the following, a brief outline for the paper is given: Section 2
provides some basic equations for tracing the equilibrium path. In
addition, the spherical arc-length is briefly described. In Section 3,
the characteristics of critical states are investigated, and a classifi-
cation of simple critical points is introduced. Moreover, an iterative
procedure for calculating the critical load from the unloaded state
is presented. Section 4 defines the concept of stability boundary in
parameterized systems. The formulation and the numerical imple-
mentation of the proposed method for parameter sensitivity anal-
ysis of critical points are given in this section. Numerical examples
in Section 5 examine the accuracy and computational efficiency of
the suggested procedure in tracing critical points with different
types of control parameters and imperfections. Finally, concluding
remarks are presented in Section 6.

2. Equilibrium path

The total potential energy P is a function of the nodal displace-
ment vector u 2 Rn and the load parameter p 2 R for perfect
structures. Here, n denotes the number of degrees of freedom
(DoFs). This energy is a summation of internal strain energy U
and the work done by the external load. For structures under a
displacement independent loading, P is:

Pðu; pÞ ¼ UðuÞ � pqT u; ð1Þ

where q is the external load vector, and the superscript T shows the
transpose of the supposed vector or matrix. In elastic structures, the
value of P is stationary for equilibrium states. Consequently, its first
derivative with respect to u, which is called residual force r, is equal
to 0, and it leads to a set of equilibrium equation as follows:

rðu; pÞ ¼ FintðuÞ � pq ¼ 0: ð2Þ

Here, Fint(u) represents the nodal internal force and equals oU/ou.
The vector pq denotes the external load. The set of points satisfying
Eq. (2) is called the equilibrium path.

In order to trace the equilibrium path, many numerical tech-
niques have been developed and used in the literature (see, for
example, (Crisfield, 1981; Krenk, 1995; Le Grognec and Le Van,
2008; Riks, 1979)). A robust scheme, which obtains a set of discrete
points on the equilibrium path, is based on Newton’s method. This
method usually includes incremental and iterative parts. In this
paper, Du and Dp represent the nodal displacement and load incre-
ments (predictors), respectively, and their relationship is:

KTðuÞDu ¼ Dpq; ð3Þ

where KT denotes the tangent stiffness matrix and can be derived
from the second derivative of the strain energy with respect to u.
In the iterative part, the increments are updated by correctors:

Duiþ1 ¼ Dui þ dui

Dpiþ1 ¼ Dpi þ dpi:

�
ð4Þ

The superscript i represents the iteration number within each incre-
ment. Since the incremental–iterative methods obtain a set of dis-
crete points, an extra constraint is added to the system:

rðu; pÞ
Lðu;pÞ

� �
ðnþ1Þ�1

¼
0
0

� �
ðnþ1Þ�1

: ð5Þ

The analyst may utilize various formulae for L. In the arc-length
algorithm, the additional constraint is assumed to be an n + 1
dimensional sphere in the space of ðu; pÞ 2 Rnþ1 (Crisfield, 1991):

a2
uDuTDuþ a2

pDp2 � Ds2 ¼ 0; ð6Þ

where Ds is the arc-length. The parameters au and ap determine the
contributions of displacement and load terms in the arc-length
equation. Fig. 1 shows the incremental–iterative procedure in the
arc-length approach. As it can be seen, Ds/au and Ds/ap represent
the radii of the n + 1 dimensional sphere in the directions of u
and p, respectively.

If the contribution of the load term in Eq. (6) is omitted by
choosing ap = 0, the cylindrical arc-length constraint is obtained
(Crisfield, 1981; Magnusson and Svensson, 1998; Ramm, 1981).
This means that the radius of the n + 1 dimensional sphere in the
direction of the load parameter becomes infinitely large. In con-
trast, for the choice au = 0, the spherical arc-length method
changes into the standard Newton–Raphson (load control) scheme.
Based on Fig. 1, the values of the first increments are relative to the
magnitude of the arc-length Ds, and can be calculated as follows:

Dp1 ¼ �
Dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
ubT

0b0 þ a2
p

q ; ð7Þ

Fig. 1. Spherical arc-length procedure.
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