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a b s t r a c t

When rewriting the governing equations in Hamiltonian form, analytical solutions in the form of sym-
plectic series can be obtained by the method of separation of variable satisfying the crack face conditions.
In theory, there exists sufficient number of coefficients of the symplectic series to satisfy any outer
boundary conditions. In practice, the matrix relating the coefficients to the outer boundary conditions
is ill-conditioned unless the boundary is very simple, e.g., circular. In this paper, a new two-level finite
element method using the symplectic series as global functions while using the conventional finite ele-
ment shape functions as local functions is developed. With the available classical finite elements and
symplectic series, the main unknowns are no longer the nodal displacements but are the coefficients
of the symplectic series. Since the first few coefficients are the stress intensity factors, post-processing
is not required. A number of numerical examples as well as convergence studies are given.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Fracture can occur in engineering components subject to
mechanical loading conditions. stress intensity factors (SIF) are
important parameters in design. It is well known that the finite ele-
ment method (FEM) is the most general method for finding SIFs.
However, FEM requires special techniques and a special mesh
mapping in the vicinity of the crack tip for fracture mechanics
applications and is generally extremely time consuming and is
not high in precision in the vicinity at cracks. For these reasons,
many variants of FEM for evaluating the SIFs have been developed.

Tong et al. (1973) first presented a hybrid singular element
based on the Hellinger–Reissner variational principle in order to
overcome the shortcomings of the conventional finite elements.
After that, Ping et al. (2008) and Chen and Ping (2009) studied
the singular stress fields around the vertex of an anisotropic mul-
ti-material wedge and the inplane singular elastic field problems of
inclusion corners by a super singular wedge tip element. Yao and
Hu (2011) presented a novel singular finite element to study
cracked plates with arbitrary traction acting on crack surfaces.
Karihaloo and Xiao (2001a,b) and Karihaloo et al. (2003) developed
a higher-order hybrid crack element (HCE) to calculate the
coefficients of higher order terms of the crack tip asymptotic field.
The coefficients in standard fracture test specimens such as

three-point bend beams and wedge-splitting specimens were
determined with the aid of HCE. Lin and Abel (1988) introduced
a virtual crack extension technique that employs both a variational
formulation and FEM to calculate the mode-I SIF for a structure
containing a single crack. Subsequently, Hwang et al.
(1998,2001,2005) and Hwang and Ingraffea (2007) generalized this
method to study multiple crack systems and 3D planar cracks. The
extended finite element method (XFEM) was originally proposed
by Belytschko and Black (1999). They presented a method for
enriching the finite element approximations so that crack growth
problems can be solved with minimal re-meshing. Yazid et al.
(2009) presented a review of XFEM for computational fracture
mechanics and discussed the basic ideas and formulation for the
newly developed XFEM method. Besides the above works, the frac-
tal geometry concepts were introduced into finite element method.
Reddy and Rao (2008a,b) used a fractal finite element method
(FFEM) to analyze cracks in a homogeneous, isotropic, and two-
dimensional linear-elastic body subject to mixed-mode (modes I
and II) loading conditions. Su et al. (2003) and Su and Fok (2007)
determined the coefficients of the crack tip asymptotic field
by FFEM. Leung and Tsang (2000) and Tsang et al. (2003,2004)
developed a FFEM for the analysis of static and dynamic crack
problems. It can determine SIFs directly and proved to be very effi-
cient and accurate.

In this paper, a finite element discretized symplectic method
(FEDSM) is developed for calculating the stress-intensity factors
in linear-elastic crack problems. The method separates the overall
cracked elastic body into a finite size singular stress region near the
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crack tip and a regular region far away from the crack tip, i.e., near
field and far field. Both the near and far fields were meshed by the
conventional elements. A symplectic dual approach for elasticity
which was first introduced by Zhong and co-workers (Yao et al.,
2009; Lim and Xu, 2010; Zhong et al., 2009) is performed in the
near fields. The symplecic method has been widely used in many
research areas, e.g. theory of plates and shells (Li et al., 2011,
2013), fracture mechanics (Leung et al., 2009; Xu et al., 2010), vis-
coelasticity (Zhang and Xu, 2006), fluid mechanics (Wang et al.,
2009), functional graded effects (Chen and Zhao, 2009), piezoelec-
tricity (Leung et al., 2007), etc. The analytical solution around the
crack tip in the near field is solved and expanded in terms of the
symplectic eigenfunctions. The displacement, stress and SIFs can
be analytically represented. Marking use of the analytical solution,
a displacement transformation is introduced to the near field so
that the large number of nodal displacements there can be reduced
effectively to a small set of undetermined coefficients of the sym-
plectic eigenfunctions. Consequently, computer storage and solu-
tion times are reduced significantly and parallel computation is
possible. The remaining of the paper is organized in the following
manner. In Section 2, the fundamental equations in Lagrangian
form are transformed to the Hamiltonian form. In Section 3, the
governing equations are solved by the method of separation of
variables and the displacements and stresses are expressed analyt-
ically by the symplectic eigenfunctions. In Sections 4 and 5, the
general formulation of FEDSM and SIFs for the crack systems are
presented. Section 6 shows the numerical results and discusses
the accuracy and efficiency.

2. The fundamental problem and Hamilton system

Consider an isotropic edge-cracked media in polar coordinates
ðr; hÞ. The r-axis is along the radial direction with the origin located
at the tip of the crack as shown in Fig. 1. The overall cracked media
is divided into near field and far field regions. The crack face is at
h ¼ �p and the length of the crack is a. The constitutive relation
and strain–displacement relation in the near fields are governed by

rr ¼ Eðer þ tehÞ=ð1� t2Þ; rh ¼ Eðeh þ terÞ=ð1� t2Þ;
srh ¼ Eerh=½2ð1þ tÞ� ð1Þ

er ¼ @rur; eh ¼ ur=r þ 1=r@huh; erh ¼ @ruh � uh=r þ 1=r@hur ð2Þ

where rij and eij be the components of stresses and strains, ur and uh

are displacements along the r-axis and h-axis, E is the elastic mod-
ulus, t is Poisson’s ratio and G ¼ E=½2ð1þ tÞ� is the shear modulus.

In the following part, we rewrite the governing equation in the
second order Lagrangian form to the first order Hamiltonian form

so that the method of separation of variables can be formally ap-
plied to find both the stress and displacement distributions analyt-
ically in symplectic eigenfunctions. Introduce the transformation
g ¼ ln r and use over-dot to represent differentiation with respect
to g, namely _ðÞ ¼ @ðÞ=@g. Define the original variable q and dual
variable p as

q ¼ ur uhf gT and p ¼ rrr rsrhf gT
; ð3Þ

respectively corresponding to the configuration and momentum
variables in the classical Hamiltonian analysis. The Hamiltonian
equations is given by

_W ¼ HWþ f ð4Þ

where W ¼ q pf gT, H and f are the Hamiltonian operator matrix
and the non-homogenous part given by

H¼

�t �t@h ð1�t2Þ=E 0
�@h 1 0 2ð1þtÞ=E
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ð5Þ

The eigenfunctions of the Hamiltonian operator matrix have
some distinguished behaviors as mentioned in Leung et al.
(2009). The eigensolutions of the Hamiltonian operator matrix
have some particular behaviors that if lj is an eigenvalue, �lj is
an eigenvalue also. Hence the eigensolutions can be subdivided
into two groups of a with positive real part and b with negative
real part so that

ðaÞ : lðaÞj ; i¼1;2; . . . ; ReðlðaÞj Þ>0 or ReðlðaÞj Þ¼0 and ImðlðaÞj Þ>0

ðbÞ : lðbÞj ; i ¼ 1;2; . . . ; lðbÞj ¼ �lðaÞj

whose eigenfunction-vectors are denoted respectively as w
ðaÞ
j and

w
ðbÞ
j . Introducing an inner product hwi; J;wji ¼

R
Xðqipj � qjpiÞdh be-

tween any two of them, one has the adjoint symplectic orthonormal
relations

hwðaÞn ; J;wðaÞk i ¼ hw
ðbÞ
n ; J;wðbÞk i ¼ 0

hwðaÞn ; J;wðbÞk i ¼ dnk; hwðbÞn ; J;wðaÞk i ¼ �dnk

where dij is the Kronecker delta which equals to one if i = j and

equals to zero otherwise. J ¼ 0 I
�I 0

� �
for the identity matrix I.

The boundary conditions along the crack surface are:

½Eður þ @huhÞ=r þ trr=r�h¼�p ¼ r�h
srhjh¼�p ¼ s�rh

�
ð6Þ

Here, r�h and s�rh are the surface tractions along the crack sur-
faces h ¼ �p .

3. The symplectic eigenvalue and eigenfunctions

Consider the homogeneous part of Eq. (4) with the traction free
crack conditions at the inner boundary surfaces. The eigenvalue
eigenfunctions can be obtained similar to Leung et al. (2009) and
are divided into two groups: zero eigenfunctions (the eigenfunc-
tions having zero eigenvalue) and non-zero eigenfunctions
(otherwise).

3.1. The zero eigenfunctions

Because of the traction-free natural boundary conditions, there
exist zero eigenvalues whose eigenfunctions correspond to theFig. 1. An isotropic media with a single edge crack.
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