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a b s t r a c t

We consider the finite radially symmetric deformation of a circular cylindrical tube of a homogeneous
transversely isotropic elastic material subject to axial stretch, radial deformation and torsion, supported
by axial load, internal pressure and end moment. Two different directions of transverse isotropy are con-
sidered: the radial direction and an arbitrary direction in planes normal locally to the radial direction, the
only directions for which the considered deformation is admissible in general. In the absence of body
forces, formulas are obtained for the internal pressure, and the resultant axial load and torsional moment
on the ends of the tube in respect of a general strain-energy function. For a specific material model of
transversely isotropic elasticity, and material and geometrical parameters, numerical results are used
to illustrate the dependence of the pressure, (reduced) axial load and moment on the radial stretch
and a measure of the torsional deformation for a fixed value of the axial stretch.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known from the literature (see, for example, the re-
view by Saccomandi (2001)) that, in the absence of body forces, a
number of deformations can be supported in equilibrium in an
incompressible isotropic nonlinearly elastic solid material by
application of surface tractions alone. Such deformations are said
to be controllable. If, within a given class of materials, the deforma-
tion is controllable for all materials and independent of any specific
constitutive law in the considered class then the deformation is
said to be universal (within the considered class). Saccomandi
(2001) introduced the term relative-universal for situations where
the class of materials is a subclass of a general class of materials.
The deformation that is of particular interest in the present paper
is a combined deformation consisting of the (i) finite extension, (ii)
inflation and (iii) torsion of a cylindrical circular tube, which, for an
isotropic material, is indeed universal. However, for anisotropic
materials, in particular for the transversely isotropic materials with
which we are concerned is this paper, this deformation is only con-
trollable for certain directions of transverse isotropy, and then, in
these cases, it is also universal.

Several authors have studied the deformations (i)–(iii) for iso-
tropic materials from many different perspectives in the past. In

brief, torsional deformations for incompressible isotropic materials
were first examined in a series of papers by Rivlin (1948, 1949a,b)
while associated experimental data were provided in Rivlin (1947)
and Rivlin and Saunders (1951). Gent and Rivlin (1952), guided by
the theoretical results of Rivlin (1949b), performed experiments to
obtain data for the problem of combined uniform extension, uni-
form inflation and small amplitude torsion. Comparison of the Og-
den model (Ogden, 1972) for rubberlike solids with the data given
in Rivlin and Saunders (1951) for solid and tubular cylinders com-
posed of natural rubber under combined extension and torsional
deformation has been presented by Ogden and Chadwick (1972).
A detailed analysis of the combined extension and inflation of such
materials with particular reference to bifurcation into non-circular
cylindrical modes of deformation was provided by Haughton and
Ogden (1979a,b).

More recently, Horgan and Saccomandi (1999) used a material
model incorporating limiting chain extensibility to capture the
hardening response of incompressible isotropic elastic materials
under large strain torsional deformations, while Kanner and Hor-
gan (2008) were concerned with investigating the effects of strain
stiffening on the response of solid circular cylinders in the com-
bined deformation of torsion superimposed on axial extension.

For compressible isotropic materials, for which the deforma-
tions (i)–(iii) are not, in general, controllable, a class of materials
admitting isochoric pure torsional deformation was proposed by
Polignone and Horgan (1991). In the same spirit, Kirkinis and
Ogden (2002) derived analogous solutions and also introduced a
methodology for generating corresponding results for
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incompressible materials. Different aspects of pure torsion for spe-
cial classes of compressible materials and considerations of loss of
ellipticity have also been studied in Beatty (1996) and Horgan and
Polignone (1995), respectively, amongst others.

The contributions mentioned above related to rubberlike mate-
rials, but more recently attention has also been focused on elastic
deformations of soft biological tissues in the context of biomechan-
ics, and these materials are in general anisotropic, typically trans-
versely isotropic or orthotropic. To the best of our knowledge, very
few authors have studied the deformations (i)–(iii) for anisotropic
elastic solids in the finite deformation regime, in particular for
incompressible transversely isotropic elastic solids, including fi-
bre-reinforced materials, although Green and Adkins (1970) pre-
sented some general theoretical results for a transversely
isotropic circular cylindrical tube subject to axial extension, infla-
tion and torsion for the case in which the axis of transverse isot-
ropy is aligned with the tube axis. Also, under the restriction of
idealized fibre reinforcement (i.e. inextensible fibres), Spencer
(1972) discussed the problem of extension and torsion of solid
elastic cylinders augmented with one or two families of helical fi-
bres, although the analysis is mainly restricted to the linear theory
(see also the interesting discussion relating to two symmetric heli-
cally disposed fibre families in Spencer (1984)). For large deforma-
tions, in the context of soft tissue biomechanics (with particular
reference to arteries), the problem of extension and inflation has
been examined by Ogden and Schulze-Bauer (2000), with the
anisotropy associated with helical fibre reinforcement, which is
used to model the contribution of embedded collagen fibres to
the overall response of the tissue, while Horgan and Saccomandi
(2003) discussed the combined extension and inflation problem
for soft tissues by taking into account limiting chain extensibility.
A thorough analysis of the elastic response of arteries, for simulta-
neous extension, inflation and torsion, was provided by Holzapfel
et al. (2000).

In the present analysis, we consider the problem of combined
finite extension/contraction, radial contraction/expansion and tor-
sion of a circular cylindrical tube of homogeneous elastic material
with specific directions of transverse isotropy (which may be, but
need not necessarily be considered as a material reinforced by a
single family of fibres). In particular, in Section 2 we introduce
the notation and summarize the necessary kinematics for the com-
bined deformation in an incompressible material. We then sum-
marize, in Section 3, the constitutive equation for a transversely
isotropic material, and the equilibrium equations (in the absence
of body forces) are used to obtain general formulas for the internal
pressure in the tube, the resultant axial load and moment on the
ends of the tube that are applied to maintain the prescribed defor-
mation in respect of a general transversely isotropic form of consti-
tutive law. These results, which also apply in the isotropic
specialization, recover the formulas given in Haughton and Ogden
(1979a), for the case in which no torsion is applied to the tube.

In Section 4 we highlight the fact that, for transversely isotropic
materials, the considered deformation cannot be maintained for all
possible directions of transverse isotropy, and we therefore spe-
cialize to those directions which are admissible, specifically the ra-
dial direction and directions locally lying in planes normal to the
radius of the tube.

In general, closed form solutions are not obtainable in simple
form, and in order to illustrate the results we therefore provide
numerical results based on a simple prototype form of transversely
isotropic strain-energy function in Section 5. In particular, we
show, in graphical form, how, for a fixed value of the axial exten-
sion, the pressure, the (reduced) axial load and the moment de-
pend on the applied torsion and radial stretch for a specific tube
thickness and transverse isotropy parameter. Finally, a brief sum-
mary of the results is given in the concluding Section 6.

2. Kinematics and geometry

Consider a material continuum which, when unstressed and un-
strained, occupies the reference configuration Br. Let a typical
material point in this configuration be identified by its position
vector X. The corresponding position vector in the deformed con-
figuration B is denoted x and the deformation from Br to B is writ-
ten x ¼ vðXÞ, where the vector function v is referred to as the
deformation (we are considering quasi-static deformations here).
The deformation gradient tensor, denoted F, is given by

F ¼ GradvðXÞ; ð1Þ

where Grad is the gradient operator with respect to X. The associ-
ated right and left Cauchy–Green deformation tensors, denoted C
and B respectively, are defined as

C ¼ FTF ¼ U2; B ¼ FFT ¼ V2; ð2Þ

where U and V, respectively, are the right and the left stretch ten-
sors, which are positive definite and symmetric and come from
the polar decompositions F ¼ RU ¼ VR;R being a proper orthogonal
tensor. For a homogeneous incompressible nonlinearly isotropic
elastic solid, the elastic stored energy (defined per unit volume) de-
pends on only two invariants, which are the principal invariants of C
(equivalently of B), defined by

I1 ¼ trðCÞ ¼ k2
1 þ k2

2 þ k2
3; I2 ¼ trðC�1Þ ¼ k2

1k
2
2 þ k2

1k
2
3 þ k2

2k
2
3; ð3Þ

where ki > 0; i 2 f1;2;3g, are the principal stretches, i.e. the eigen-
values of U and V. The incompressibility constraint, which in terms
of F is

det F ¼ 1; ð4Þ

may be written in terms of the principal stretches as

k1k2k3 ¼ 1: ð5Þ

If the material has a single distinguished direction (the direction
of transverse isotropy), identified by the unit vector M in the refer-
ence configuration, two more invariants, denoted I4 and I5 (in gen-
eral independent), are introduced that are associated with M.
These invariants are defined by

I4 ¼ FM � FM ¼m �m; I5 ¼ CM � CM ¼m � Bm; ð6Þ

where we have introduced the vector m ¼ FM, which represents
the direction of transverse isotropy in the deformed configuration.
In general m is not a unit vector.

2.1. Combined extension, inflation and torsion

We now consider a circular cylindrical tube, which, in terms of
cylindrical polar coordinate ðR;H; ZÞ, is defined by

A 6 R 6 B; 0 6 H 6 2p; 0 6 Z 6 L ð7Þ

in the reference configuration Br, where A and B are the internal and
external radii and L is the length of the tube. The position vector X
of a point of the tube is given by

X ¼ RER þ ZEZ ; ð8Þ

where ER and EZ are the unit basis vectors associated with R and Z,
respectively. We also denote by EH the corresponding unit vector
associated with H.

The position vector x in the deformed tube is written

x ¼ rer þ zez; ð9Þ

where we make use of cylindrical polar coordinates ðr; h; zÞ in B,
which are associated with unit basis vectors er; eh; ez. The
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