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a b s t r a c t

We suggest a numerical procedure for rapid simulation of fretting wear in a contact of two bodies
subjected to tangential oscillations with a small amplitude. The incremental wear in each point of contact
area is calculated using the Reye–Archard–Khrushchov wear criterion. For applying this criterion, the
distributions of pressure and relative displacements of bodies are required. These are calculated using
the method of dimensionality reduction (MDR).

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fretting wear occurs if two bodies are pressed against each
other and are subsequently subjected to oscillations with small
amplitude. Even if there is no gross slip in the contact, tangential
slip occurs at the border of the contact area leading to wear and
fatigue. Fretting wear was in the past an object of intensive
experimental investigation and theoretical simulation for such
applications as fretting of tubes in steam generators and heat
exchangers (Ko, 1979; Fisher et al., 1995; Lee et al., 2009), joints
in orthopedics (Collier, 1992), electrical connectors (Antler,
1985), and dovetail blade roots of gas turbines (Rajasekaran and
Nowell, 2006; Ciavarella and Demelio, 2001) as well as many oth-
ers. Most theoretical works were concerned with finite element
(Ding et al., 2009; Mohd Tobia et al., 2009) or boundary element
simulations (Lee et al., 2009). Thus in (Ding et al., 2007) a fretting
wear modelling of complex geometries like spline coupling with
finite element modeling was considered. Even while these simula-
tions provided a complete picture of fretting wear, they still
require too much computational time to be implemented as an
interface in larger dynamic simulations. In a conventional finite
element fretting simulation most of the time is wasted not for
the calculation of wear itself but for the solution of the normal
and tangential contact problems of progressively changing profile.

That is why there are a lot of alternative approaches to a full finite
element analysis. Examples of analytical and semi-analytical
approaches were given in Nowell (2010) and Hills et al. (2009).
In the present paper, we suggest to do this step using the method
of dimensionality reduction (Heß, 2012; Popov, 2013; Popov and
Heß, 2013; Popov, 2012). This drastically reduces the time of the
whole simulation.

2. The method of dimensionality reduction

In this section we quickly recapitulate the main rules of the
method of dimensionality reduction (Heß, 2012; Popov and Heß,
2013, 2014a). We consider a contact of a three-dimensional
rotationally symmetric profile z ¼ IðrÞ and an elastic half-space.
The profile is first transformed into a one-dimensional profile
gðxÞ according to the MDR-rule (Heß, 2012; Popov and Heß, 2013)

gðxÞ ¼ xj j
Z xj j

0

I0ðrÞdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2
p ð1Þ

as illustrated in Fig. 1, where I0ðrÞ is a first derivative of IðrÞ.
The reverse transformation is given by the integral

IðrÞ ¼ 2
p

Z r

0

gðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2
p dx ð2Þ

The profile (1) is pressed to a given indentation depth d into an
elastic foundation consisting of independent springs with spacing
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Dx (Fig. 1b) whose normal and tangential stiffness is given by
(Popov and Heß, 2013)

kz ¼ E�Dx

kx ¼ G�Dx
; ð3Þ

where E� is the effective elastic modulus

1
E�
¼ 1� m2

1

E1
þ 1� m2

2

E2
ð4Þ

and G� the effective shear modulus

1
G�
¼ ð2� m1Þ

4G1
þ ð2� m2Þ

4G2
; ð5Þ

E1 and E2 are the Young’s moduli, G1 and G2 the shear moduli of the
indenter and the half -space, and m1 and m2 are their Poisson-ratios.
Note that throughout this paper, we assume that the contacting
materials satisfy the condition of ‘‘elastic similarity’’

1� 2m1

G1
¼ 1� 2m2

G2
ð6Þ

that guarantees the decoupling of the normal and tangential contact
problems (Johnson, 1985). Note that the choice of the spatial step
Dx is arbitrary as long as it is much smaller than all characteristic
length scales of the problem; the solution does not depend on its
choice.

The vertical displacement of an individual spring is given by

uzðxÞ ¼ d� gðxÞ ð7Þ

and the resulting normal force is given by

f zðxÞ ¼ E�Dx d� gðxÞð Þ: ð8Þ

The linear force density is therefore

qzðxÞ ¼
f zðxÞ
Dx
¼ E�uzðxÞ ¼ E� d� gðxÞð Þ: ð9Þ

The contact radius a is determined by the condition

gðaÞ ¼ d: ð10Þ

The total normal force is obtained by integration over all springs in
contact:

FN ¼ 2E�
Z a

0
d� gðxÞð Þdx: ð11Þ

According to the MDR rules, the distribution of normal pressure p in
the initial three-dimensional problem can be calculated using the fol-
lowing integral transformation (Heß, 2012; Popov and Heß, 2013):

pðrÞ ¼ � 1
p

Z 1

r

q0zðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2
p dx ¼ E�

p

Z a

r

g0ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2
p dx: ð12Þ

Note that all above results obtained by the MDR, represent exact
solutions of the corresponding three-dimensional problem. As was
shown by Galin (1961), the transformation (1) maps the complete
three-dimensional contact problem to a one-dimensional contact
with an elastic foundation. All three-dimensional properties (as dis-
placements, stresses and so on) can be obtained for the solution of
the linear elastic foundation problem by appropriate integral trans-
formations. This solution is exact and was used later in the well-
known publication by Sneddon (1965). This solution can be general-
ized to all contact problems which can be reduced to the normal
contact problem.

The complete proof for tangential contact can be found in the
book (Popov and Heß, 2014b).

If the indenter is now moved in the tangential direction by uð0Þx ,
the springs in contact will first stick to the indenter thus producing
tangential force f x ¼ kxuð0Þx until this force achieves the critical
value lf z, where l is the coefficient of friction. After this, the tan-
gential force remains constant and equal to lf z while the springs
begin to slide. The same is valid if the movement starts from an
arbitrary stress state of a spring. It either follows the indenter, if
the tangential force is smaller than the critical one or it slides, in
which case the tangential force is equal to the critical value. Thus,
for any incremental change of the tangential displacement the fol-
lowing equations are valid:

DuxðxÞ ¼ Duð0Þx ; if kxuxðxÞj j < lf z

uxðxÞ ¼ � lf zðxÞ
kx

; in the sliding state
: ð13Þ

The sign in the last line of this equation depends on the direction of
movement of the indenter. By following incremental changes in the
indenter position, the absolute tangential displacement can be
determined unambiguously at any location and any point in time.
Therefore, the tangential force will also be determined:

f x ¼ kxuxðxÞ ¼ G�Dx � uxðxÞ: ð14Þ

The tangential force density is equal to

qxðxÞ ¼
f x

Dx
¼ G�uxðxÞ: ð15Þ

Distributions of tangential stresses sðrÞ and displacements uð3DÞ
x ðrÞ

in the initial three-dimensional problem are defined by equations
similar to (2) and (12), (Popov and Heß, 2014b):

uð3DÞ
x ðrÞ ¼ 2

p

Z r

0

uxðxÞdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2
p ; ð16Þ

sðrÞ ¼ � 1
p

Z 1

r

q0xðxÞdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2
p ¼ �G�

p

Z 1

r

u0xðxÞdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2
p : ð17Þ

Fig. 1. The 3-dimensional body of revolution (a); and the corresponding one-dimensional MDR-transformed profile in a contact with the elastic foundation.
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