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In this paper, an exponential framework for strain energy density functions of elastomers and soft biolog-
ical tissues is proposed. Based on this framework and using a self-contained approach that is different
from a guesswork or combination viewpoint, a set strain energy density functions in terms of the first
and second strain invariants is rebuilt. Among the constructed options for strain energy density, a new
exponential and mathematically justified model is examined. This model benefits from the existence
of second strain invariant, simplicity, stability of parameters, and the state of being accurate. This model
can capture strain softening, strain hardening and is able to differentiate between various deformation-
state dependent responses of elastomers and soft tissues undergoing finite deformation. The model has
two material parameters and the mathematical formulation is simple to render the possibility of numer-
ical implementations. In order to investigate the appropriateness of the proposed model in comparison to
other hyperelastic models, several experimental data for incompressible isotropic materials (elastomers)
such as VHB 4905 (polyacrylate rubber), two various silicone rubbers, synthetic rubber neoprene, two
different natural rubbers, b186 rubber (a carbon black-filled rubber), Yeoh vulcanizate rubber, and finally
porcine liver tissue (a very soft biological tissue) are examined. The results demonstrate that the
proposed model provides an acceptable prediction of the behavior of elastomers and soft tissues under
large deformation for different applied loading states.
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1. Introduction

The most outstanding property of elastomers is their ability to
undergo large deformation under relatively small stress. Over the
last few decades, there have been considerable applications of
them at real life scenarios as well as model developments based
on different assumptions to predict the non-linear behavior of such
materials. As example of these large stretches, rubber boot of an
automotive CV joint that is simultaneously seeing large deforma-
tions and different loads and temperatures, large deformation
analysis of dielectric membranes (Goulbourne et al., 2007), elasto-
meric polymer light-emitting devices and displays (Liang et al.,
2013), stretchable organic solar cells (Lipomi et al., 2011), flexible
and stretchable electrodes for dielectric elastomer actuators
(Rosset and Shea, 2013), high strain rate response of rubber
membrane (Albrecht and Ravi-Chandar, 2013), inflation of tubular
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elastomeric balloons (Mao et al., 2014) all rely on the remarkable
large-stretch properties of elastomeric materials. Experimental
evidences suggest that there exist three regions for engineering
stress-stretch curves of rubbers: a large softening region with
monotone increasing is followed by a moderate region and then
often, it experiences an abrupt upturn under large strains. The
computed results show rather abrupt changes in the slope of the
curves at biological tissues than rubbers.

As Fig. 1 depicts, the behavior of elastomeric materials differs at
different states of deformation. Another significant outcome of this
simulation is that, a hyperelastic model could be handled well in
uniaxial mode but might fail at another deformation. Considering
this complexity in analysis for a real construction in the finite ele-
ment method demands an accurate mechanical model. Accordingly,
one often adopts a strategy that seeks to use the most accurate
mechanical model as well as the simplest acceptable model that
contributes a reasonable approximation of a deformation, usually
leads to a weighted model with large number of parameters.

A considerable number of investigations have been conducted
over the last decades on the elastomers and their large strain
behaviors. Different constitutive models have been proposed to


http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2014.08.018&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2014.08.018
mailto:hdarijani@gmail.com
mailto:darijani@uk.ac.ir
http://dx.doi.org/10.1016/j.ijsolstr.2014.08.018
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr

M.R. Mansouri, H. Darijani/International Journal of Solids and Structures 51 (2014) 4316-4326 4317

Engineering stress (MPa)

Fig. 1. Material behavior at different deformations, for example: uniaxial and
biaxial deformations. The Arruda-Boyce model (1993) can follow experimental data
accurately at uniaxial deformation but this model is not sufficient for another mode
of deformation for gum rubber. Data is taken from James et al. (1975).

predict these characteristics which some require complex material
investigation in order to derive material parameters. In the
framework of the theory of isotropic hyperelasticity, strain energy
functions may be divided in two overall categories: statistical
models and phenomenological models.

Statistical mechanics models or chain models such as Arruda-
Boyce 8-chain model (1993) appear to provide the most predictive
model of the larger strain behavior under different states of defor-
mation (Boyce and Arruda, 2000). Chain models take advantage of
this useful property that they comprise minimum number of
parameters, which are related to molecular quantities. It is none-
theless useful to mention that the four parameters Meissner and
Matejka model (2003) is not related to molecular quantities, the
four parameters Edwards and Vilgis model (1986) related to the
molecular quantities and its form is so complicated, two number
of five parameters of Miehe et al. model (2004) is not related to
molecular features and Arruda-Boyce model (1993) fails at small
deformation. Moreover, it is worth to mention two physically-
based models in finite elasticity of elastomers which have been
developed and applied to fit similar experimental data. The first
model is by Drozdov and Gottlieb (2006) which coincides with
the Ogden law by a special choice of adjustable parameters, and
the second model is by Drozdov and Christiansen (2006) that is a
constrained chain model with four parameters. Although chain
models obtain many advantages for behavior modeling of the
rubbers, it is not suitable for taking some important observed phe-
nomena such as irreversible deformations and inelastic volumetric
expansion (Gernay et al., 2013). As mentioned previously, chain
models have a complicated structure, so that in some cases they
are not amenable to provide a closed-form solution. Maybe this is
the reason that Horgan and Saccomandi (2003, 1999) and others
have a tendency to use more simple strain energy functions for ana-
lytical closed-form solution to boundary-value problems instead of
complicated chain models. Moreover, chain models, due to compli-
cated forms, are not a desirable for numerical solutions.

The phenomenological models are supported by a mathemati-
cal relationship and treat the problem from viewpoint of contin-
uum mechanics. In this viewpoint, strain energy function may be
modeled as invariant-base and principal stretch-base. For example,
Mooney (1940) published an invariant-base phenomenological
model in terms of principal invariants of the right Cauchy-Green
strain tensor, I and I,. Later, Treloar (1943a,b) proposed a so-called
Neo-Hookean material model in terms of I; with only one material
parameter; although, these two models are restricted to the small
deformations. Rivlin (1948) introduced a generalized model, also
called polynomial hyperelastic model in terms of strain invariants.

Following this structure, several investigators attempted to
consider strain invariants in their models in the framework of
polynomial hyperelastic model. As examples of these models
Yeoh (1993), Isihara et al. (1951), Biderman (1958), James et al.
(1975), Lopez-Pamies (2010), Attard and Hunt (2004) and
Hartmann and Neff (2003) altogether are polynomial forms of
strain energy and encompass high order strain invariants.
Tschoegl (1971) emphasized that keeping of higher order terms
in the generalized Mooney-Rivlin polynomial function leads to a
better correlation with test data for both filled and unfilled rub-
bers. Although high-order polynomial models, in terms of strain
invariants, fit the almost any hyperelastic experimental curve,
but they can also introduce difficulties during numerical solution
(Meunier et al., 2007, 2008). Hence, researchers prefer to use a
complete yet as simple as possible constitutive model for numeri-
cal and analytical solutions. The two-parameter Gent model (1996)
is a first invariant-based and has some attractive features, so that
Boyce (1996) compared this model with the 8-chain model and
realized that they are almost identical to structure and qualities
of test results. Also, Pucci-Saccomandi model (2002) and Yeoh-
Fleming model (1997) combine the concept of Gent. The other
strain energy functions include Gent and Thomas (1958),
Hart-Smith (1966), Carroll (2011), Khajehsaeid et al. (2013) and
Nunes (2011) for modeling the nonlinear elastic response of elasto-
mers. Another brilliant stretch-base strain energy function has been
proposed by Ogden (1972). It delivers a good agreement with
Treloar’s experimental data for extension of unfilled natural rubber.

There exists several comprehensive comparison and excellent
review of the development of phenomenological and statistical
mechanics treatment of rubber elasticity at different literatures,
e.g., Eltas-Zafiga and Beatty (2002), Boyce and Arruda (2000),
Marckmann and Verron (2006), Steinmann et al. (2012), Martins
et al. (2006) and Vahapoglu and Karadeniz (2006). As a result of
these investigations, a large number of well-known models are
not reliable on the entire ranges of strain and different modes of
deformation, simultaneously. Furthermore, they might be failed
to be well matched with different materials.

In this work, we propose a new framework for strain energy
density function of elastomers and soft tissues (Section 2). In Sec-
tion 2, based on this framework we construct a set strain energy
density functions in terms of the first and second strain invariants.
Among this set, we select a simple exponential mathematical
model with two material parameters for the behavior modeling
of a wide range of rubber-like materials and biological tissues at
different states of deformation. In Section 3, the calculation
method of the material parameters is presented. In Section 4, we
fit the proposed model to different test data to demonstrate the
model’s performance in describing rubber-like and biological
materials. As a result of these comparisons, the model is able to
capture mechanical behavior of such materials. In Section 5, the
significance of different terms in the proposed model is discussed,
comprehensively.

2. Model development

The general motion of a continuum is described by x = y (X,t),
where X and x denote the position vectors of material particle in
its reference configuration and current configuration at time ¢,
respectively. The deformation gradient is shown by F=0x/0X.
Since det(F) > 0, the polar decomposition theorem states that F is
uniquely decomposed as

F=RU=VR M

where U and V are the right and left stretch tensors, respectively. U
and V are positive definite symmetric tensors and R is a proper
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