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a b s t r a c t

The motivating key for this work was the absence of a phenomenological model that can reasonably
predict a variety of non-proportional experimental data on the anisotropic Mullins effect for different
types of rubber-like materials. Hence, in this paper, we propose a purely phenomenological direction
dependent orthotropic model that can describe the anisotropic Mullins behaviour with permanent set
and, has orthotropic invariants that have a clear physical interpretation. The formulation is based on
an orthotropic principal axis theory recently developed for nonlinear elastic problems. A damage function
and a direction dependent damage parameter are introduced in the formulation to facilitate the analysis
of anisotropic stress softening in rubber-like materials. A direction dependent free energy function,
written explicitly in terms of principal stretches, is postulated. The proposed theory is able to predict
and compares well with experimental data available in the literature for different types of rubberlike
materials.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

When subjected to cyclic loadings many rubberlike and biolog-
ical materials exhibit an anisotropic stress-softening phenomenon
widely known as the Mullins effect (Mullins, 1947). Due to its the-
oretical and technological interest, there is a wide literature on the
Mullins effect; readers are referred to the literature (Shariff, 2000,
2006; Dargazany and Itskov, 2009; Merckel et al., 2012; Dorfmann
and Pancheri, 2012) for detail description on the anisotropic
behaviour of the Mullins effect.

Softening induced anisotropy is demonstrated by performing
successive non-proportional loadings (i.e. successive loadings with
changing the directions of stretching or the type of loading) and,
recently, several non-proportional experiments (Hanson et al.,
2005; Diani et al., 2006; Diani et al., 2006; Itskov et al., 2006;
Dargazany and Itskov, 2009; Machado et al., 2012; Merckel et al.,
2012) were conducted. However, only a few phenomenological
models (Shariff, 2000, 2006; Itskov et al., 2006; Dorfmann and
Pancheri, 2012; Merckel et al., 2013) describing anisotropic Mul-
lins behaviour appeared in the literature. Except for Shariff
(2006) model, the performances of previous phenomenological
models were not tested against a wide range of deformations
and different types of materials. We note that, Shariff (2006) direc-
tion dependent model describes the anisotropic behaviour in
Mullins materials via a symmetric direction dependent orthotropic

structural tensor D and a symmetric direction dependent structural
shear tensor S. His 2006 model does not consider permanent set
and most of his anisotropic results were obtained using only the
orthotropic tensor D. His results compare well with the few aniso-
tropic experimental data available at that time and were able to
describe non-proportional loadings. However, the efficacy of his
model cannot be further justified since there were very few non-
proportional loading experiments existed before 2006. But since
2006, several non-proportional loading experiments appeared in
the literature and, in view of this, to further justify the efficacy of
Shariff (2006) model, a direction dependent orthotropic model is
proposed in this paper. Although the proposed thermodynamically
consistent phenomenological model is based on Shariff (2006)
model, it is formulated differently. The formulation here does not
use the structural tensors D and S but used a principal axis formu-
lation, recently developed for orthotropic nonlinear elasticity
(Shariff, 2011). It also takes permanent set into account. In this
communication, the efficacy of the proposed model is tested
against a wide range of non-proportional loadings and different
types of rubber-like materials.

The paper is organised as follows. Since most readers are not
familiar with the principal axis formulation recently developed
by Shariff (2011), it is briefly outlined in Section 2. The direction
dependent damage parameter and the damage function are pro-
posed in Section 3. The materials in Sections 2 and 3 are used in
Section 4 to formulate the constitutive equation and, in Section 5
energy dissipation is shown via the Clausius–Duhem inequality.
In Section 6, the performance of the constitutive equation is tested
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against several types of loadings, including non-proportional load-
ings. Also in Section 6, the proposed theory is compared to several
different types of experiments and rubber-like materials. The
model in Section 4 is extended to take permanent set into account
and, in Section 7, a permanent set model is proposed and its results
are compared with experimental findings. For benefit of the read-
ers the key equations are given in Appendix A. Finally, concluding
remarks close the paper.

2. Principal axis formulation: nonlinear orthotropic elasticity

Since our model is based on a principal axis formulation devel-
oped for nonlinear orthotropic elasticity, in this Section, we briefly
outline the preliminaries of the principal axis formulation recently
developed by Shariff (2011). The principal stretch ki ði ¼ 1;2;3Þ is
given by

ki ¼ ei � Uei; ð1Þ

where U is the right stretch tensor and ei is a principal direction of
U. In this communication, all subscripts i and j take the values 1, 2
and 3, unless stated otherwise. In Shariff (2011) paper, a strain
energy function We for an incompressible orthotropic material is
proposed, where its invariants have immediate physical interpreta-
tion. It has the form

We ¼Wðk1; k2; f1; f2; n1; n2Þ

¼ ~W k1; k2; k3 ¼
1

k1k2
; f1; f2; n1; n2

� �
; ð2Þ

where the invariants 1 P fi ¼ ða � eiÞ2 P 0 and 1 P ni¼ðb�eiÞ2 P 0
and, the perpendicular vectors a and b are the preferred orthotropic
directions. The physical meaning of ki is obvious and it is clear
that fi and ni are the square of the cosine of the angle between
the principal direction ei and the preferred directions a and b,
respectively.

The function W enjoys the symmetry

Wðk1; k2; f1; f2; n1; n2Þ ¼Wðk2; k1; f2; f1; n2; n1Þ: ð3Þ

A specific form of (3) has been proposed to characterise the
mechanical behaviour of passive myocardium (Shariff, 2013).

The classical invariants Ik, (k ¼ 1;2; . . . ;7) are related to the
physical invariants via the relations

I1 ¼ trC ¼ k2
1 þ k2

2 þ k2
3;

I2 ¼
ðtrCÞ2 � trC2

2
¼ k2

1k
2
2 þ k2

1k
2
3 þ k2

2k
2
3;

I4 ¼ a � Ca ¼ k2
1f1 þ k2

2f2 þ k2
3f3;

I5 ¼ a � C2a ¼ k4
1f1 þ k4

2f2 þ k4
3f3;

I6 ¼ b � Cb ¼ k2
1n1 þ k2

2n2 þ k2
3n3;

I7 ¼ b � C2b ¼ k4
1n1 þ k4

2n2 þ k4
3n3;

ð4Þ

where the right Cauchy–Green deformation tensor C ¼ U2; f3 ¼
1� f1 � f2 and n3 ¼ 1� n1 � n2. For an incompressible solid, the

invariant I3 ¼ detðCÞ ¼ ðk1k2k3Þ2 ¼ 1. It is shown by Shariff (2013)
that the invariant sets fI1; I2; I4; I5; I6; I7g and fk1; k2; f1; f2; n1; n2g are
a minimal integrity basis (Spencer, 1971) with a syzygy; only five
of these invariants are independent. The second Piola–Kirchhoff
stress is given by

T ð2Þ ¼ 2
@We

@C
� pC�1; ð5Þ

where p is the Lagrange multiplier associated with the incompress-
ible constraint k1k2k3 ¼ 1. Principal axis formulation requires the
symmetric components @We

@C

� �
ij of @We

@C relative to the basis feig. These

components are (Shariff, 2011)

@We

@C

� �
ii

¼ 1
2ki

@ ~W
@ki
ði not summedÞ ð6Þ

and the shear components

@We

@C

� �
ij

¼ 1
k2

i � k2
j

@ ~W
@fi
� @

~W
@fj

 !
ei � Aej þ

@ ~W
@ni
� @

~W
@nj

 !
ei � Bej

 !
;

i – j; i; j ¼ 1;2; ð7Þ

@We

@C

� �
a3
¼ 1

k2
a � k2

3

@ ~W
@fa

ea � Ae3 þ
@ ~W
@na

ea � Be3

 !
; a ¼ 1;2; ð8Þ

where A ¼ a� a and B ¼ b� b (� denotes the dyadic product). It is
assumed that ~W has sufficient regularity to ensure that, as ki and ka

approach kj and k3, respectively, Eqs. (7) and (8) have limits. It is
explicit in Eqs. (7) and (8) that the second Piola–Kirchhoff stress
is coaxial with C when the preferred directions a and b are parallel
to any two of the principal directions. This explicitness may not be
as transparent if the strain energy function is expressed in terms of
the classical invariants (4) (or possibly most types of invariants
found in the literature). The Cauchy stress us given by

r ¼ 2F
@We

@C
FT � pI: ð9Þ

3. Direction dependent damage parameter and damage
function

In this paper the term ‘‘damage’’ is interpreted in its widest
sense; for example, it may mean ‘‘rupture of molecular bonds that
reform to create new microstructure’’ or ‘‘conversion of hard phase
to soft phase’’ or ‘‘cavitation damage’’ or ‘‘any change in the ground
state mechanical properties that are induced by strain’’. We are
only concerned with strain induced damages that lead to stress
softening. A damage function is introduced to measure an amount
of damage caused by strain. A measure of damage is an important
tool for analysing stress-softening materials (Shariff, 2006, 2009;
Ogden and Roxburgh, 1999) The proposed damage function g
(which may depend on material properties) is defined such
that 0 ¼ gð1Þ 6 gðuÞ;u 2 T ¼ fu ¼ ½u1;u2; . . . un�T 2 Rn; uk > 0;k ¼ 1;
2; . . . ng. The function g has also the properties that ĝ0ðaÞP 0,
where ĝðaÞ ¼ gðð1� aÞ1þ awÞ;0 < a 6 1 and wð– 1Þ 2 T is a con-
stant. ĝ0ðaÞ may or may not exist at a ¼ 0. If it exist then ĝ0ð0Þ ¼ 0.
In view of our definition, g increases monotonically as u moves
away in an n-dimensional straight line from the point u ¼ 1. It is
possible that, in order to adequately describe stress-softening
behaviour in a compressible solid, a constitutive equation may
consist of more than one forms of damage function. In this paper,
we are only concerned with one-dimensional u, i.e., u ¼ x 2 R and
x > 0. If, for example, for a particular material, the compressing
of an ei-line element does not contribute to stress softening, then
we can construct g such that gðxÞ ¼ 0 for x < 1. In this communica-
tion, however, we propose g to have the form

gðxÞ ¼ ðx
c1 � 1Þ2

xc2
; ð10Þ

where c1 and c2 are material constants and they must be con-
strained so that gðxÞ increases monotonically as x moves away from
the point x ¼ 1; we note that the inequality 2c1 > c2 ensures the
monotonicity of g.

In order to relate a direction dependent damage parameter, on a
line element parallel to a principal direction ei, to a mechanical
value, we consider the following inequality

sðminÞ
i 6 ki 6 sðmaxÞ

i ; ð11Þ
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