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a b s t r a c t

Expressions for bulk stress within a granular material in a dynamic setting are reviewed and explicitly
derived for assemblies of three dimensional arbitrary shaped particles. By employing classical continuum
and rigid body mechanics, the mean stress tensor for a single particle is separated into three distinct com-
ponents; the familiar Love–Webber formula describing the direct effect of contacts, a component due to
the net unbalanced moment arising from contact and a symmetric term due to the centripetal accelera-
tion of material within the particle. A case is made that the latter term be ignored without exception
when determining bulk stress within an assembly of particles. In the absence of this centripetal term
an important observation is made regarding the nature of the symmetry in the stress tensor for certain
types of particles; in the case of particles with cubic symmetry, the effects of dynamics on the bulk stress
in an assembly is captured by an entirely skew-symmetric tensor. In this situation, it is recognised that
the symmetric part of the Love–Webber formula is all that is required for defining the mean stress tensor
within an assembly – regardless of the dynamics of the system.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction and background

In recent times the homogenisation processes involved in
developing a continuous, macroscopic definition of stress in a dis-
crete granular material have received a great deal of attention. At
one level the definition of stress is quite straight-forward and gen-
erally uncontested, however the area has spawned its fair share of
historical debate. Most of this debate surrounded the potential for
asymmetry in the stress tensor (Bardet and Vardoulakis, 2001;
Bagi, 2003; Kuhn, 2003; Bardet and Vardoulakis, 2003a,b; Froiio
et al., 2006) and arguments for the existence of ‘couple stresses’
in the granular continuum (Chang et al., 1990; Oda, 1999; Oda
et al., 2000; Ehlers et al., 2003; Ehlers, 2010; Alonso-Marroquin,
2011; Goldhirsch, 2010). This is now largely resolved with general
acceptance that, without contact moments, asymmetry does not
exist in equilibrium (de Saxcé et al., 2004; Fortin et al., 2003). Some
recent work has even demonstrated that asymmetry is not
necessarily inherent in the presence of contact moments, provided
such moments are properly accounted for in the homogenisation
process (Wensrich, 2014).

The majority of prior work has focused on material in equilib-
rium or in a quasi-static state. Here a variety of approaches have

been used such as the mean stress theorem as initially applied
by Love (1927) and Weber (1966), course graining (e.g.
Goldhirsch, 2010; Edwards and Grinev, 1999; Weinhart et al.,
2012) and variational methods (i.e. virtual work, Bardet and
Vardoulakis, 2001; Chang et al., 2005; Mehrabadi et al., 1982;
Christoffersen et al., 1981; Satake, 1983; Goddard, 2007). From
the perspective of these static approaches, apparent asymmetry
can arise if the assumption of equilibrium is violated. In response
there has been a significant amount of recent work focused on
developing consistent homogenisation processes that are applica-
ble even in the absence of equilibrium. These approaches largely
focus on calculating stress as an ensemble average of the stress
within individual particles, defined from the point of view of the
conservation of momentum at all points within a given particle
(de Saxcé et al., 2004; Fortin et al., 2003; Fortin et al., 2002; Li
et al., 2009; Nicot et al., 2013; Moreau, 2010; Luding, 2010). This
work has shown that the components of stress arising from parti-
cle dynamics may be significant and are necessary for eliminating
the asymmetry present in earlier quasi-static descriptions.

In this paper, we apply a similar approach to define stress
within a dynamic granular assembly as an ensemble average over
individual particles subject to the laws of classical continuum the-
ory and rigid body mechanics. For the most part, the approach
taken here is known (de Saxcé et al., 2004; Fortin et al., 2003;
Fortin et al., 2002; Li et al., 2009; Nicot et al., 2013; Moreau,
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2010; Luding, 2010), however we consider three-dimensions and
arbitrary particle shape and progress to the point where a new
interpretation can be made. In particular, we present an argument
that the component of stress relating to the angular velocity of par-
ticles, often referred to as ‘‘centrifugal stress’’ (de Saxcé et al., 2004;
Nicot et al., 2013), be excluded without exception from the defini-
tion of bulk stress. Without this term, we make further observa-
tions on the nature of stress symmetry in granular materials that
will greatly simplify the process of accounting for dynamics in cer-
tain classes of materials, including the vast majority of Discrete
Element Models where spherical particles are still commonplace.

2. Bulk stress in the absence of equilibrium

As has been discussed many times in the literature (e.g.
Drescher and do Josselin de Jong, 1972), the basic definition of Cau-
chy stress within a granular assembly usually relies on a volume
average over a suitable Representative Volume Element, VRVE;

hri ¼ 1
VRVE

Z
VRVE

rdV ð1Þ

This volume average represents the average stress within a con-
tinuous domain corresponding to the discrete assembly of parti-
cles. By considering the stress within each particle separately, it
is possible to express this average as;

hri ¼ 1
VRVE

X
P2VRVE

VPhrPi; ð2Þ

where hrpi is the volume average of stress within particle ‘P’, with
volume VP . With this in mind, we proceed with the rest of our anal-
ysis focused on the stress within a single particle – the above defi-
nition will allow us to relate this to bulk averages. This also applies
for any time-volume or weighted time-volume averaging methods
(e.g. Babic, 1997; Zhu and Yu, 2002).

Consider the particle shown in Fig. 1. This particle is subject to
boundary tractions, f~scg, via contact with other particles in the
assembly, body force densities due to actions such as gravity, ~c,
and is not necessarily in equilibrium. At any point within the par-
ticle the conservation of momentum implies that;

rrþ ~c ¼ q€~x; ð3Þ

where €~x is the total derivative of velocity at the point in question.
Relying on the Gauss–Qstrogradsky divergence theorem, it can

then be shown (e.g. Nicot et al., 2013) that the mean stress within
the particle can be written;

hrpi ¼ 1
Vp

X
c

Z
Ac

~sc � ~xdA�
Z

Vp
q€~x� ~c
� �

� ~xdV

 !
; ð4Þ

where the symbol � represents the dyadic product between
vectors.

If we assume that the particle is rigid we can characterise the

contact tractions as a set of discrete forces, ~f c ¼
R

Ac scdA
n o

, acting

at corresponding contact points f~xcg. Together with an assumption
that the particles are homogeneous and subject to a constant body
force density, Eq. (4) becomes;

hrpi ¼ 1
Vp

X
c

~f c � ~xc � 1
Vp q

Z
Vp

€~x� ~xdV þ 1
Vp ~c�

Z
Vp

~xdV ð5Þ

Thus the stress within the particle can be represented by the
sum of three distinct components. For future reference, we identify
them as follows;

hrpiLw ¼
1

Vp

X
c

~f c � ~xc; ð6Þ

is the familiar ‘Love–Webber’ formula (Love, 1927; Weber, 1966)
describing the stress due to the contact forces;

rP
� �

I ¼ �
1

VP q
Z

VP

€~x� ~xdV ; ð7Þ

is an inertial component from the dynamics of the particle; and,

rP
� �

B ¼
1

VP
~c�

Z
VP

~xdV ; ð8Þ

is that originating from the body forces.
The body force component can be easily simplified by express-

ing the position of points within the particle relative to the centre
of mass, ~x ¼ ~xg þ ~r, leading to;

hrPiB ¼
1

VP
~c�

Z
VP
ð~xg þ ~rÞdV ¼ ~c� ~xg ð9Þ

As has been done recently by Nicot et al. (2013), we can analyse
the inertial component from the perspective of the rigid body
assumption by expressing the acceleration of any point within
the particle as follows1

€~x ¼ €~xg þ _~x� ~r þ ~x� ð ~x� ~rÞ ð10Þ

where ~x is the angular velocity of the particle. Substituting this into
the inertial component of stress we obtain the following;

hrPii ¼�q€~xg�~xg� 1
VP q

Z
VP

_~x�~r
� �

�~rdV� 1
VP q

Z
VP
ð ~x�ð ~x�~rÞÞ�~rdV

ð11Þ

With the aid of the vector triple product rule;
~a� ð~b� ~cÞ ¼ ~bð~a � ~cÞ � ~cð~a � ~bÞ Eq. (11) can be written;

hrPiI ¼ �q€~xg � ~xg � 1
VP q

Z
VP

_~x� ~r
� �

� ~rdV � 1
V

q
Z

VP
ð ~x � ~rÞ ~x� ~rdV

þ 1
VP q

Z
VP
ð ~x � ~xÞ~r� ~rdV ; ð12Þ

or in component form;

hrp
ijiI ¼ �q€~xg

i
~xg

j �
1

VP q
Z

VP
eikl _xkrlrjdV � 1

VP q
Z

VP
xlrlxirjdV

þ 1
VP q

Z
VP

xkxkrirjdV ; ð13Þ

where eijk is the usual Levi–Civita permutation symbol.

Fig. 1. A single particle forming a part of a granular assembly is subject to a number
of contact traction forces, f~scg, and a body force density, ~c.

1 Due to the rigid body assumption, we have not explicitly written Eq. (3) in terms
of convected derivatives (as has been done previously by Luding (2010)). In this
instance, the effects of rotation within the material are captured by Eq. (10).
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