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a b s t r a c t

The theoretical understanding of the fracture mechanics of rubber is not as well developed as for other
engineering materials, such as metals. The present study is intended to further the understanding of
the dissipative processes that take place in rubber in the vicinity of a propagating crack tip. This
dissipation contributes significantly to the total fracture toughness of the rubber and is therefore of great
interest from a fracture mechanics point of view. To study this, a computational framework for analysing
high-speed crack growth in a biaxially stretched rubber under plane stress is therefore formulated. The
main purpose is to investigate the energy release rates required for crack propagation under different
modes of biaxial stretching. The results show, that inertia comes into play when the crack speed exceeds
about 50 m/s. The total work of fracture by far exceeds the surface energy consumed at the very crack tip,
and the difference must be attributed to dissipative damage processes in the vicinity of the crack tip. The
size of this damage/dissipation zone is expected to be a few millimetres.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fracture mechanics of metals has been studied extensively both
experimentally and theoretically over the years. When it comes to
rubber, several experimental investigations have been made, e.g.
Rivlin and Thomas (1953), Thomas (1955), Greensmith and
Thomas (1955), Greensmith (1956), Kolsky (1969), Gent and Kim
(1978), Gent and Marteny (1982a), Dragoni and Medri (1988),
Chung et al. (1991), Deegan et al. (2002), Petersan et al. (2004),
Zhang et al. (2009), Niemczura and Ravi-Chandar (2011) and
Chen et al. (2011). Several of the early studies aimed at establishing
a critical tearing energy for rubber. Other studies have tried to
determine the crack speed as a function of the applied (macro-
scopic) load state. Additional information has been provided in
other studies that have performed microscopic investigations of
the fracture surfaces of rubber (Bascom, 1977; Fukahori and
Andrews, 1978; Bhowmick et al., 1980; Setua and De, 1983; Gent
and Pulford, 1984; Goldberg et al., 1988; Pandey and Mathur,
2003). However, the theoretical understanding of fracture in
rubber is less developed.

Rubbers may be characterised as viscoelastic, which means that
viscoelastic dissipation contributes to the total fracture toughness
of the material. Hence, there are at least two different sources for
energy consumption at an advancing crack tip in rubber. The first
source is associated with the innermost region at the crack tip,

where cavities form, polymer chains are pulled out, and polymer
chain bonds are broken. This process is mainly governed by the
basic molecular structure and strength of the material (Thomas,
1994). The second source is the viscoelastic dissipation in the poly-
mer in front of the crack tip (Persson et al., 2005). Possibly some
amount of damage may also be involved. On the basis of these
observations, it is to be expected that the tearing energy of rubber
will depend strongly on both temperature and crack velocity.

It has also been noted that transverse stretching (i.e. stretching
in the direction of crack extension and propagation) tends to
decrease the energy release rate for propagating cracks (Gent and
Kim, 1978; Gent and Marteny, 1982a). In fact, rubber sheets that
are highly stretched in the transverse direction can be split apart
quite easily. This indicates that the originally isotropic material
becomes fibrous in character, i.e. much weaker for a tear running
in the direction of extension than for one running at right angles
to it.

There are a few theoretical studies that examine the contribu-
tion of viscoelasticity to the fracture toughness of polymers, e.g.
Carbone and Persson (2005), Marder (2005, 2006), Persson and
Brener (2005), Wang and Chen (2005), Tang et al. (2008, 2009),
Kroon (2011), Elmukashfi and Kroon (2012) and Elmukashfi and
Kroon (in press). However, several of these studies adopt a theory
valid for infinitesimal strains, and the validity of those results for
rubber-like solids is therefore questionable. In a previous study
by the present author (Kroon, 2011), dynamic crack propagation
under steady-state conditions in rubber was examined. Plane
deformation was assumed and a Kelvin-type of material was
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adopted. It was demonstrated that viscoelastic dissipation may
explain the large discrepancies observed between the surface
energy consumed at the very crack tip and the macroscopic frac-
ture toughness obtained in experiments. Other theoretical studies
address different aspects of crack growth in viscoelastic solids,
mostly under the assumption of infinitesimal strains (Knauss,
1969; Lindley, 1973; Schapery, 1975, 1989; de Gennes, 1996;
Rahulkumar et al., 2000).

In the present work, a computational framework is proposed for
analysing high-speed crack propagation in biaxially stretched rub-
ber sheets under conditions of steady-state and plane stress. The
main purpose of the study is to shed some more light on the con-
tributions from local surface energy at the crack tip and bulk visco-
elasticity and possible damage processes to the total work of
fracture required to propagate a crack. The problem to be analysed
is formulated in Section 2 and the numerical implementation is
outlined in Section 3. Numerical results are presented in Section 4
and discussed in Section 5.

2. Problem formulation

2.1. Geometry and boundary conditions

Consider a crack that propagates through a rubber solid at a
constant speed and under steady-state conditions. The crack is
illustrated in Fig. 1(a). At some point the crack passes through
the control volume, indicated by the dotted box in Fig. 1(a). This
rectangular control volume is analysed, and its dimensions and
the applied boundary conditions are indicated in Fig. 1(b). Due to
symmetry, only the upper half of the control volume is modelled.
The coordinate system X1–X2–X3 pertains to the reference config-
uration and is located at the propagating crack tip. Position vectors
x ¼ xiei and X ¼ Xiei are associated with the deformed and refer-
ence configurations, respectively, where ei is a set of orthogonal
basis vectors. The displacement vector is defined as u ¼ x� X,
and the traction vector T is defined as force per unit undeformed
area. Boundary conditions are applied according to

X1 ¼ �B0 : u1 ¼ �D1; T2 ¼ 0; ð1Þ
X1 > 0; X2 ¼ 0 : u2 ¼ 0; T1 ¼ 0; ð2Þ
X1 < 0; X2 ¼ 0 : T1 ¼ T2 ¼ 0; ð3Þ
X2 ¼ H0 : u2 ¼ D2; T1 ¼ 0; ð4Þ

i.e. loading is imposed in terms of the prescribed displacements
D1 and D2. In addition, plane stress is assumed, implying that
T3 ¼ 0 8 X.

The applied boundary displacements correspond to the global
stretches

K1 ¼
B0 þ D1

B0
; K2 ¼

H0 þ D2

H0
: ð5Þ

2.2. Equations of motion

We assume that steady-state prevails, and the fundamental
assumption is made that the time derivative of all field variables
can be computed as

dð�Þ
dt
¼ �V c

@ð�Þ
@X1

; ð6Þ

where Vc is the Lagrangian speed of the crack in the reference con-
figuration. The true crack speed vc relates to the Lagrangian speed
as

vc ¼ VcK1: ð7Þ

The equations of motion may be expressed as

@Pij

@Xj
¼ q0

d2ui

dt2 ¼ q0V2
c
@2ui

@X2
1

; ð8Þ

where Pij are the components of the first Piola–Kirchhoff stress ten-
sor, and q0 is the density of the material in the undeformed state.
Body forces are ignored. Multiplication with a virtual displacement
field dui and integration over the control volume domain X0 givesZ

X0

@Pij

@Xj
� q0V2

c
@2ui

@X2
1

 !
duidX0 ¼ 0: ð9Þ

By use of the chain rule and Gauss’ theorem, Eq. (9) may be recast
intoZ

X0

Pij�q0V2
c
@ui

@X1
d1j

� �
@dui

@Xj
dX0þ

Z
S0

q0V2
c
@ui

@X1
N1�Ti

� �
duidS0¼0;

ð10Þ

where dij is the Kronecker delta, S0 is the boundary surface of the
control volume in the reference configuration, Ni is the outward
normal to S0, and Ti ¼ PijNj is the traction vector acting on S0. We
also note that

Pij
@dui

@Xj
¼ PijdFij ¼ SijdEij; ð11Þ

where Fij ¼ @xi=@Xj; Sij, and Eij are the components of the deforma-
tion gradient tensor, the second Piola–Kirchhoff stress tensor, and
the Green strain tensor, respectively. Application of the boundary

Fig. 1. (a) Crack propagating through a rubber solid. (b) Geometry and boundary conditions of the analysed control volume.
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