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a b s t r a c t

Elastic contact problems involving Euler–Bernoulli beams or Kirchhoff plates generally involve concen-
trated contact forces. Linear elasticity (e.g. finite element) solutions of the same problems show that finite
contact regions are actually developed, but these regions have dimensions that are typically of the order
of the beam thickness. Thus if beam theory is appropriate for a given structural problem, the local elas-
ticity fields can be explored by asymptotic methods and will have fairly general (problem independent)
characteristics. Here we show that the extent of the contact region is a fixed ratio of the beam thickness
which is independent of the concentrated load predicted by the beam theory, and that the distribution of
contact pressure in this region has a universal form, which is well approximated by a simple algebraic
expression.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

If classical Euler–Bernoulli beam theory is used to describe
elastic components in frictionless contact, the solutions generally
predict concentrated contact forces — i.e. that the extent of the
contact area is restricted to one or more isolated points. A simple
example is illustrated in Fig. 1, where a beam of length L is simply
supported at its ends, and a rigid cylinder of radius R is pressed
against it at the mid point by a force P.

In this situation, contact will occur only at the mid-point as long
as the radius of curvature of the deformed beam is greater than R
and this condition is satisfied if

P < P0 �
4EI
LR

; ð1Þ

where EI is the flexural rigidity of the beam.
For P > P0, a finite strip of contact is developed — i.e. the beam

conforms to the shape of the cylinder over a line segment of length
a, but non-zero tractions are limited to a pair of concentrated
forces P=2 at the two edges of this segment (Johnson, 1985), as
shown in Fig. 2. The beam is then essentially loaded in ‘four-point
bending’ and the bending moment in the contact segment is
PðL� aÞ=4, corresponding to a radius of curvature 4EI=PðL� aÞ.
Equating this to the radius of the cylinder and solving for the
length a, we obtain

a ¼ L� 4EI
PR
¼ L 1� P0

P

� �
: ð2Þ

1.1. Higher order beam theories

Clearly the continuum solution of this problem will not involve
concentrated forces, with the corresponding implication of locally
unbounded stresses and strains. Instead, we anticipate the devel-
opment of small but finite regions of contact with correspondingly
large local contact stresses, whose value may be of importance for
design purposes.

Some degree of regularization in the beam solution can be
achieved by using higher order theories, such as Timoshenko beam
theory (Chen, 2011), or by including the effect of transverse normal
strain (Naghdi and Rubin, 1989; Gasmi et al., 2012). However, the
resulting theories are considerably more complex to apply, and the
contact pressure distributions still exhibit significant deviations
from the ‘exact’ solution, particularly at the edges of the predicted
contact region, where asymptotic arguments require that the
contact pressure should go to zero with a square-root bounded
form (Johnson, 1985).

1.2. Analytical solutions

The problem of Fig. 1 was solved exactly in the context of
elasticity theory by Keer and Miller (1983), by expressing the
elastic fields in the beam as Fourier transforms with respect to
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the horizontal variable. The lower surface of the beam is traction-
free, and because the contact conditions are frictionless, the shear
traction on the upper surface is also zero everywhere. Thus, three
of the four boundary conditions are ‘global’ and can be satisfied
by elementary relations between the transform variables. The
remaining (normal) conditions on the upper surface then lead to
a pair of dual integral equations and these can be reduced to a
single Fredholm equation that must be solved numerically.

1.3. Finite element solutions

The Fourier transform technique has been applied to a range of
beam-like contact problems (Schonberg et al., 1987; Keer and
Schonberg, 1986; Keer and Silva, 1972) of which it clearly
represents the definitive solution. However, its use demands a sig-
nificant familiarity with dual integral equations and the final calcu-
lation still involves a numerical solution. A more straightforward
alternative is of course to solve the complete structural contact
problem using a two or three-dimensional finite element model,
in which the contact tractions can be approximated to any desired
degree of accuracy by suitable mesh refinement. However, this
approach has its own problems, notably because (i) the resulting
contact areas are very small and hence require very fine local
meshing, but (ii) in many cases (for example, for the problem of
Fig. 1 with P > P0), the exact location of the contact region is not
known a priori, so this fine mesh may need to be extended over a
substantial region of the body.

1.4. Asymptotic arguments

The fact that the local contact stress fields will be restricted to a
region that is small compared with the other dimensions of the
problem opens up the possibility of using asymptotic methods.
These methods have been used to great effect in deducing the char-
acter of the local frictional slip zones and stress fields in fretting
fatigue applications, from parameters defined in the simpler, fully
adhered solution (Churchman and Hills, 2006; Flicek et al., 2013).

In the problem of Fig. 1, if we choose a coordinate system cen-
tered on one of the two contact regions implied by the geometry of
Fig. 2, and magnify the scale sufficiently for the resulting finite con-
tact area to occupy most of the field of interest, then the magnifi-
cation will usually be sufficient for the ends of the beam and the
other region of contact to appear a large distance away. St.
Venant’s principle then suggests that the effects of these distant
loads can influence the local contact region only through the local
values of bending moment and shear force, and hence it should be
possible to characterize the local contact fields in terms of a quite
limited number of parameters. In other words, we should be able
to develop a few fairly general continuum contact solutions that
can be ‘patched in’ to beam contact problems, enabling the maxi-
mum contact pressure and other parameters of interest to be pre-
dicted without necessitating a full continuum solution of the each
individual problem. This is the objective of the present paper.

2. Hertzian approximation

We consider the two-dimensional plane strain problem in
which the beam of Figs. 1 and 2 is of depth h and the force P is
to be interpreted as force per unit length (into the paper). We then
have

EI ¼ E�h3

12
and P0 ¼

E�h3

3LR
; ð3Þ

where

E� ¼ E
ð1� m2Þ ð4Þ

is the plane strain modulus, and E; m are Young’s modulus and
Poisson’s ratio respectively.

If P � P0, it seems reasonable to expect that the local contact
behavior in Fig. 1 will be well approximated by the Hertzian equa-
tions. In particular, that the contact pressure distribution will be
given by (Johnson, 1985)

pðxÞ ¼ 2P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � x2

p
pb2 ð5Þ

and the contact semi-width b will be

b ¼ 2

ffiffiffiffiffiffiffiffi
PR
pE�

r
: ð6Þ

We might hope to obtain a better approximation to the local
fields by recognizing that in the beam solution, the contact surface
is concave with radius

Rb ¼
4EI
PL

: ð7Þ

This value is determined by the bending moment in the beam,
which is only very slightly affected by the exact contact pressure
distribution, so we can reasonably treat it as a pre-existing radius
and calculate pðxÞ and b by replacing R by the composite radius R�

where

1
R

�
¼ 1

R
� 1

Rb
¼ 1

R
1� P

P0

� �
: ð8Þ

We obtain

b ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h3

3pL

~P

1� ~P

 !vuut where ~P ¼ P
P0
; ð9Þ

after which pðxÞ is given by (5). In particular, the maximum contact
pressure is

pð0Þ ¼ P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3L~Pð1� ~PÞ

ph3

s
: ð10Þ

3. Finite element solution

To evaluate the range in which these approximations are appro-
priate, we constructed a finite element model of the problem. The

P

L

R

Fig. 1. A cylinder pressed against a beam.
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Fig. 2. Contact tractions for P > P0.

4436 J.H. Kim et al. / International Journal of Solids and Structures 51 (2014) 4435–4439



Download English Version:

https://daneshyari.com/en/article/277517

Download Persian Version:

https://daneshyari.com/article/277517

Daneshyari.com

https://daneshyari.com/en/article/277517
https://daneshyari.com/article/277517
https://daneshyari.com

