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a b s t r a c t

This paper brings a comparative analysis between dynamic models of couple-stress elastic materials and
structured Rayleigh beams on a Winkler foundation. Although physical phenomena have different
physical origins, the underlying equations appear to be similar, and hence mathematical models have
a lot in common. In the present work, our main focus is on the analysis of dispersive waves, band-gaps
and localised waveforms in structured Rayleigh beams. The Rayleigh beam theory includes the effects of
rotational inertia which are neglected in the Euler–Bernoulli beam theory. This makes the approach
applicable to higher frequency regimes. Special attention is given to waves in pre-stressed Rayleigh
beams on elastic foundations.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction and analogy between waves in Rayleigh beams
and couple-stress elastic materials

Bloch waves in structured media have received a significant
attention in models of photonic and phononic crystals, that
encompass problems of electro-magnetism, optics, acoustics and
more recently elasticity (Yablonovitch, 1987; John, 1987;
Kushwaha et al., 1993; Sigalas and Economou, 1993). An important
feature of elastic waves, even in an isotropic case, is the presence of
two types of waves linked to dilatation and shear, respectively.

More recently, there was a significant interest generated by
studies of micropolar media and couple-stress materials (see, for
example, Morini et al. (2013), Engelbrecht et al. (2013), Zisis
et al. (2014), Gourgiotis and Piccolroaz (2014)). In particular, the
Mindlin’s approach (Mindlin, 1964) leads to additional higher-
order derivatives in the governing equations. Engelbrecht et al.
(2005) follow Mindlin’s interpretation of a micro-structure as a
polycrystal, whose micro-elements are taken as deformable cells.
In the limit when the cells are rigid, their approach would lead
to the Cosserat model. It was noted that the higher-order model
leads to the novel dispersion properties of waves supported by
such a micro-structured medium. We also note a formal equiva-
lence between constrained Cosserat model and the couple-stress
model of structured media (see, for example, Koiter (1964),
Mindlin and Tiersten (1962)), and a further analogy with the
theory of Rayleigh beams which accounts for rotational inertia,
which will be discussed in the text below.

When rotational inertia is neglected in analysis of flexural
waves, this is fully appropriate in the long wave approximations
and is well adopted to the Euler–Bernoulli beam theory. Dispersion
and filtering of elastic waves in structured prestressed Euler–
Bernoulli beams were considered in Gei et al. (2009), which
includes analysis of band-gap shift, defect-induced annihilation
and localised modes. It is also known that the couple-stress effects
are neglected in the classical models of linear elasticity.

It appears that there is a mathematical underlying framework,
which applies both to the couple-stress approach in elasticity as
well as flexural waves in beam models accounting for the effects
of rotational inertia.

The Rayleigh beam theory is used here to account for the rotary
motion of beam elements. This approach also allows for the
description of flexural waves at high frequency ranges (Graff,
1991). In the Rayleigh beam theory, the assumptions regarding
the geometry of the deformation and the material properties
remain unchanged, so that the rotation / of the cross sections is
not an independent parameter, but it is constrained to the
transverse displacement v by the relation / ¼ v 0. However, in writ-
ing the equations of motion, both the translational inertia and the
rotational inertia of beam elements are taken into account, so that

V 0 ¼ bv þ qA€v ; M0 ¼ V � Pv 0 � qI€v 0; ð1Þ

where V is the internal shear force, M the internal bending moment,
b the stiffness of a Winkler type elastic foundation, P the prestress,
q the mass density, A the area of the cross-section, and I the area
moment of inertia of the cross-section.

Combining the equations of motion with the constitutive
equation M ¼ �EIv 00, where EI is the bending stiffness, we obtain
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the governing equation for the transverse motion v of a homoge-
neous prestressed Rayleigh beam resting on an elastic foundation
of the Winkler type

EIv
0000 � Pv 00 þ qA€v � qI€v 00 þ bv ¼ 0: ð2Þ

We note that this physical problem has a formal mathematical
analogy with the problem of shear wave propagation in couple-
stress elastic materials. In fact, the dynamic equation governing
the anti-plane motion in a couple-stress elastic material is given
by Mishuris et al. (2012)

G‘2D2w� 2GDwþ 2q €w� J
2

D€w ¼ 0; ð3Þ

where w is the out-of-plane displacement; the shear modulus
G and the mass density q are the classical macroscopic material
parameters, whilst the characteristic length ‘ and the micro-rota-
tional inertia J are the generalised parameters connected with the
microstructure. Clearly, Eq. (3) is the two-dimensional analogue of
the Rayleigh beam Eq. (2) with b ¼ 0.

Both Eqs. (2) and (3) are not classical wave equations, because
of the fourth-order terms. In the case of the Rayleigh beam, the
coefficients near fourth-order terms include the bending stiffness
EI and the rotational inertia qI, showing that they are essentially
linked to the geometrical properties of the structural element, in
particular the area moment of inertia of the cross-section. On the
other hand, in the case of a couple-stress material, the fourth-order
terms are proportional to the microstructural parameters G‘2 and J.
In both cases, these higher-order terms are responsible for the dis-
persive character of wave propagation.

In several studies on wave propagation in generalized continua
(Mindlin, 1964; Gourgiotis et al., 2013; Morini et al., 2014), it has
been shown that elastic waves can be made non-dispersive for spe-
cial values of the rotational inertia. In particular, for shear waves in
couple stress materials described by Eq. (3), this value is given by
J ¼ 2q‘2 (Mishuris et al., 2012). By analogy, we obtain that flexural
waves in a Rayleigh beam are non-dispersive for a special value of
the prestress, namely P ¼ EA.

The key features characterising a dynamic response of a Ray-
leigh beam on the Winkler foundation are linked to the presence
of exponential and quasi-polynomial terms in the representation
of flexural displacements. In particular, exponential terms account
for the high gradient regions, and of course they can be seen in the
representation of dynamic Green’s functions. For the purpose of
illustration, we show in Fig. 1 the graphs of flexural displacements
vðxÞ produced by the time-harmonic point force applied to the
Rayleigh beam at the origin. These represent the special resonant

cases when the solution has a linear growth at infinity; the
oscillation in Fig. 1b is produced as a result of a compressive
prestress.

The structure of the paper is as follows. Section 2 presents a
detailed account of dispersion properties of flexural waves in a
homogeneous prestressed Rayleigh beam supported by a Winkler
foundation. In Section 3 we consider a periodic multi-phase med-
ium, with Bloch waves representing quasi-periodic solutions of
the equation of motion. Analysis of band gaps and filtering proper-
ties is included in this section. Section 4 includes analytical closed
form representations for dynamic Green’s functions and their
derivatives (concentrated couples), that describe the full range of
admissible localised and propagating wave forms. Finally, in Sec-
tion 5, we construct a special class of so-called quasi-periodic
Green’s functions, required to study a dynamic response of periodic
systems of masses placed along the Rayleigh beam; this also
includes periodic system of bodies with given rotational inertia.
The coupling between the rotational action and transverse motion
of masses appears to be important, which is discussed in that sec-
tion. The analysis is generic and our systematic study is applicable
to flexural systems such as plates and shells, especially for the
cases where rotational inertia appears to provide a significant
contribution.

2. Dispersion properties of a homogeneous prestressed Rayleigh
beam on an elastic foundation

The dispersion relation for a homogeneous prestressed
Rayleigh beam, governed by (2), is obtained by assuming that a
sinusoidal signal v ¼ n exp iðkx�xtÞ is propagating in the beam,
which gives

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2r2ðk2r2 þ �PÞ þ �B

Rðk2r2 þ 1Þ

vuut ; ð4Þ

where r is the radius of inertia of the beam cross-section

r ¼
ffiffiffi
I
A

r
; ð5Þ

�P and �B are the dimensionless prestress and foundation stiffness,
respectively,

�P ¼ Pr2

EI
¼ P

EA
; �B ¼ br4

EI
¼ bI

EA2 ð6Þ

and R is the normalised inertia term, having the dimension of a
squared time
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Fig. 1. Flexural vibrations produced by a time-harmonic point force applied at the origin to a Rayleigh beam on the Winkler foundation in the special resonant cases when the
solutions have a linear growth at infinity (see Section 4, formulae (40) and (41)). We plot several profiles captured at different times within the period of the oscillatory force.
A beam with circular cross section is assumed having the following properties: Young modulus 210 GPa, mass density 7.85�103 kg/m3, foundation stiffness 2.64 MPa, radius of
the cross Section 0.01 m. The angular frequency is 1034.4 s�1. Transversal displacements vðxÞ are normalised with respect to the maximum value at the origin vmaxð0Þ,
whereas the longitudinal position x is normalised with respect to the radius of the cross-section a. (a) Tensile prestress equal to 1.32 kN. (b) Compressive prestress equal to
�1.19 kN.
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