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A simple method of estimating the effect of inhomogeneity interactions on the overall properties (elastic
and conductive) is developed. It is formulated in terms of property contribution tensors that give the
contribution of an inhomogeneity to the overall properties. The method can be viewed as further devel-
opment of the approach of Rodin and Hwang (1991) and Rodin (1993) that generalized the method of
analysis of crack interactions (Kachanov, 1987) to inhomogeneities. We also extend the method to the
conductive properties. Considering the effect of interactions on the property contribution tensors on
the example of pores we find that this effect is generally moderate, at most (even when pores touch
one another) - in contrast with the effect on local fields. On example of two spheres, we compare the
interaction effects on the elastic and the conductive properties, and discuss the impact of interactions
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1. Introduction

Interactions of inhomogeneities - in the theories of elasticity
and conductivity - is a problem that has substantial history. The
emphasis seems to have been on local fields (in the context of
cracks — on stress intensity factors, SIFs). The present work has a
more specific focus - on the effect of interactions on volume
average (effective) properties. Of interest, then, are the average
over inhomogeneities quantities (strains, temperature gradients).
To this end, a simple method of analysis is proposed whereby
the said averages are found by interrelating them by linear alge-
braic equations. The method is formulated for both elasticity and
conductivity problems.

Yet another goal is to compare interaction effects in the elastic-
ity and conductivity problems. The comparison is of importance for
the explicit cross-property connections established by Sevostianov
and Kachanov (2002) (see also their review of 2009). They have
been derived under the assumption that the inhomogeneities do
not interact. Experimental data indicate, however, that they
remain valid at substantial concentrations of inhomogeneities. A
comparative analysis of the interaction effects in the two problems
clarifies the reason why this is the case.

* Corresponding author.
E-mail addresses: igor@nmsu.edu (I. Sevostianov), mark.kachanov@tufts.edu
(M. Kachanov).

http://dx.doi.org/10.1016/j.ijsolstr.2014.08.029
0020-7683/© 2014 Elsevier Ltd. All rights reserved.

The effect of interactions on local elastic fields has been first
analyzed, probably, in the work of Sternberg and Sadowski
(1952) where the axisymmetric problem of two spherical pores
of equal size was analyzed using spherical harmonics. Chen and
Acrivos (1978) constructed a solution for two spherical inhomoge-
neities of equal size in the form of multipole expansions; they esti-
mated that their analysis was accurate at distances between
spheres larger than their radius. Rodin and Hwang (1991) showed
that this estimate is overly conservative and the method can actu-
ally be applied at distances larger than 0.25 of the radius. Tagliavia
et al. (2011) used the approach of Chen and Acrivos to calculate
effective properties of synthetic foams.

A more general approach to the problem of two inhomogenei-
ties was developed by Moschovidis and Mura (1975). Their
approximate solution is based on the theorem on polynomial
conservation (Kunin and Sosnina, 1971; see, also, Asaro and
Barnett (1975)). In order to reduce the boundary-value problem
to a system of linear algebraic equations, the field acting on each
inhomogeneity was represented by Taylor’s series. This approach
can be extended to N inhomogeneities, as mentioned by Mura
(1987). Johnson et al. (1980) stated that a more accurate solution
can be obtained by the Taylor expansion centered at the point
where stresses are to be calculated. This statement was
numerically verified by Benedict et al. (2006). Zhou et al. (2011)
extended the Taylor series approach to inhomogeneities of
arbitrary shapes.
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Nomenclature (in alphabetic order)

Greek letters

Tiji stress concentration tensor

&jj strain tensor

Ojjw and @ strain concentration tensor and temperature gradi-
ent tensor, respectively

(%))o, and AP’ = (Dji(x)), transmission tensors in the
context of elasticity and conductivity problems,
respectively

AP = (DP

ikl = \ijkl

1 Poisson’s ratio of isotropic linear elastic material
Ol stress tensor
¢ volume fraction of inhomogeneities

Latin letters
Cijit stiffness tensor of a material

Dpmnii(%) external strain field generated by an isolated inho-
mogeneity experiencing uniform strains with
components of unit magnitude

Dyi(x) external temperature gradient field generated by

an isolated inhomogeneity experiencing uniform
temperature gradient with components of unit
magnitude

Gjand G tensor and scalar Green’s functions for elasticity
and conductivity problems, respectively

Hiji compliance contribution tensor

Jijkt = (dirdyi+dudy;)/2 fourth rank unit tensor with components

K conductivity contribution tensor

kij conductivity tensor of a material

Nijki stiffness contribution tensor

Pjji and Py hill tensors of an inhomogeneity for elasticity and
conductivity problems respectively

qi heat flux vector

R resistivity contribution tensor
T resistivity tensor of a material
Siji compliance tensor of a material
Sijki Eshelby’s tensor of an inhomogeneity
T temperature

Superscripts

“o0” remotely applied field

“0” matrix material

“1” material of the inhomogeneity
“in” field inside an inhomogeneity

Willis and Acton (1976) considered the effective elastic proper-
ties for weakly interacting spherical inhomogeneities through cal-
culation of the square-of-concentration term, using the far-field
solution. Comparison with numerical simulations shows that the
results are accurate at spacing larger than 0.5 of the radius of the
spheres (Rodin and Hwang, 1991). Similar approach has been pro-
posed by Chen and Acrivos (1978b) who constructed (using the
approach similar to the one of Jeffrey (1973) in the context of
viscosity of suspensions) a solution for terms up to the square of
concentration.

Kushch (1996) considered the problem of N parallel spheroidal
inhomogeneities, in the context of finding full elastic fields. His
approach - a version of the multipole expansion - reduces the
problem to an infinite system of linear algebraic equations; the
procedure converges reasonably fast. Kushch and Sevostianov
(2004) extended this approach to a material with transversely-
isotropic phases.

Schjodt-Thomsen and Pyrz (2005) considered a cubic arrange-
ment of spherical inhomogeneities and used numerical integration
in order to reduce a system of coupled singular integral equations
to a set of algebraic equations for eigenstrains, to be solved numer-
ically. They constructed both the local fields and the effective elas-
tic properties.

In a narrower context of cracks, the interaction problem was
first addressed by Barenblatt (1962) and Erdogan (1962) who
considered a 2-D arrangement of two collinear cracks; this was fol-
lowed by a large number of results (mostly numerical) on various
crack arrangements that have been summarized in several hand-
books of stress intensity factors (see, for example, Murakami
(1987)). In the 2-D case, a methodology of dealing with arbitrary
arrangements of interacting cracks using polynomial expansion
of tractions on cracks and finding polynomial coefficients from a
large system of algebraic equations was developed by Gross
(1982); it was later called “the method of pseudo-tractions” by
Horii and Nemat-Nasser (1985). This method experiences difficul-
ties for closely-spaced cracks, as well as in 3-D geometries. A sim-
pler method that applies to both 2-D and 3-D geometries (and is
practically exact in 3-D cases) was developed by Kachanov (1985,
1987); in this method, the effect of crack A on crack B is found

by assuming that crack A is loaded by uniform tractions, i.e. the
effect on crack B of traction non-uniformities on crack A is
neglected.

Rodin and Hwang (1991) extended the latter method to inter-
acting spherical inhomogeneities (note that their analysis can be
generalized to ellipsoids in a straightforward way). Since their
primary focus was on local fields, a combination of analytical
results with FEM was used (the authors called their approach a
“hybrid” one). As far as the effective properties are concerned, their
conclusion was that “the potential energy release which governs
the overall response of composite materials is almost unaffected
by interactions”. Rodin (1993) used this method to calculate
effective properties of a material containing infinite number of
spherical inhomogeneities. To this end, he considered the limit
when the number of inhomogeneities and the volume occupied
by the composite material simultaneously tend to infinity.

In the context of the conductivity problem, Jeffery (1912) con-
sidered the arrangement of two spheres using the bi-spherical
coordinates and producing solution in the form of infinite series
in Legendre polynomials. As shown by Chowdhury and Christov
(2010), the convergence of this series is very fast (exponential).
Christov (1985) applied the bi-spherical coordinates to the heat
conduction problem involving two spherical inhomogeneities
under constant gradient of applied field but no numerical results
were presented in his work. In the asymptotics of widely spaced
inhomogeneities in the conductivity problem, a solution for two
spheres was given in the earlier work of Hicks (1879), by expand-
ing the solution in spherical harmonics around two poles - centers
of the spheres (this method was later called “twin-pole expansion”
by Jeffrey (1973)). Its advantage is that the integrals involved (in
computation of the overall transport coefficients are easy to evalu-
ate. For this reason, Jeffrey (1973) suggested, in the context of the
theory of fluid suspensions, that the twin-pole expansion is supe-
rior to treatment in the bi-spherical coordinates. As noted by
Chowdhury and Christov (2010), this claim is not obvious since
the twin-pole expansion actually involves two approximations:
(1) truncation of the Legendre series, and (2) coefficients of the
series that depend on the radial coordinate, cannot generally be
found in closed form and are sought in the asymptotics of small
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