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a b s t r a c t

One considers a linear composite materials (CM), which consists of a homogeneous matrix containing a
random set of heterogeneities. An operator form of solution of the general integral equation (GIE) for the
general cases of local and nonlocal problems, static and wave motion phenomena for composite materials
with random (statistically homogeneous and inhomogeneous, so-called graded) structures containing
coated or uncoated inclusions of any shape and orientation with perfect and imperfect interfaces and
subjected to any number of coupled or uncoupled, homogeneous or inhomogeneous external fields of dif-
ferent physical nature. The GIE, connecting the driving fields and fluxes in a point being considered and
the fields in the surrounding points, are obtained for the random fields of heterogeneities in the infinite
media. Estimations of the effective properties and both the first and second statistical moments of fields
in the constituents of CMs are presented in a general form of perturbations introduced by the heteroge-
neities and taking into account a possible imperfection of interface conditions. The solution methods of
GIEs are obtained without any auxiliary assumptions such as the effective field hypothesis (EFH), which is
implicitly exploited in the known methods of micromechanics. Some particular cases, asymptotic
representations, and simplifications of proposed methods are presented for the particular constitutive
equations such as linear thermoelastic cases with the perfect and imperfect interfaces, conductivity
problem, problems for piezoelectric and other coupled phenomena, composites with nonlocal elastic
properties of constituents, and the wave propagation in composites with electromagnetic, optic and
mechanical responses.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The prediction of the behavior of composite materials in terms
of the properties of constituents and their microstructure is a cen-
tral problem of micromechanics, which is evidently reduced to the
estimation of fields in the constituents. Appropriate, but by no
means exhaustive, references for the estimation of effective elastic
moduli of statistically homogeneous media are provided by the
reviews Shermergor (1977), Mura (1987), Nemat-Nasser and Hori
(1993), Torquato (2002), Milton (2002), Buryachenko (2007a), Li
and Wang (2008), Kanaun and Levin (2008) and Dvorak (2013). It
appears today that variants of the effective medium method
(EMM, Kröner, 1958; Hill, 1965) and the Mori–Tanaka method
(MTM, Mori and Tanaka, 1973; Benveniste, 1987; Weng, 1990)
are the most popular and widely used methods. Recently a new

method has become known in the literature, namely the multipar-
ticle effective field method (MEFM) that was put forward and
developed by the author (see for references Buryachenko, 2007a).
The MEFM is based on the theory of functions of random variables
and Greens functions. Within this method one constructs a hierar-
chy of statistical moment equations for conditional averages of the
stresses in the inclusions. The hierarchy is then cut by introducing
the notion of an effective field according to which each heteroge-
neity is located inside a homogeneous so-called effective field. This
way the interaction of different inclusions is taken into account.
Thus, the MEFM does not make use of a number of hypotheses
which form the basis of the traditional one-particle methods.

It is interesting that there are known the counterparts of the
mentioned methods applied to CMs with another constitutive
laws. Except for notations, these methods coincide with the corre-
sponding methods of linear thermoelasticity. In light of the analogy
mentioned, the general operator representation of known methods
for different microinhomogeneous structures is of profound
importance in both practical and theoretical sense. The current
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paper is dedicated to generalization of the mentioned results to its
operator form for the general cases of local and nonlocal problems,
static and wave motion phenomena for composite materials with
the random (statistically homogeneous and inhomogeneous, so-
called graded) structures containing coated or uncoated inclusions
of any shape and orientation with the perfect and imperfect
interfaces and subjected to any number coupled or uncoupled,
homogeneous or inhomogeneous external fields of different phys-
ical nature. Particular simplified and asymptotic cases of these
methods are considered and qualitatively compared with the
known methods for the different specific constitutive equations.

The sketch of micromechanics of random structures can be
subdivided on a few steps. At first the so-called general integral
equation (GIE) should be proposed. The GIE is the exact integral
equation connecting the random fields at the point being consid-
ered and the surrounding points. There is a very long and dramatic
history of development of GIE which goes back to Rayleigh (1892).
For the linear elasticity, Buryachenko (2001, 2007a) presented
comprehensive review of the history of the classical GIE while
Buryachenko (2010a,b) proposed the new GIEs forming a new
background of micromechanics. The next step is formed by
so-called methods of micromechanics (e.g., MTM, EMM, or MEFM)
which are in fact the approximate solutions of these GIEs. It is wor-
thy of note (see Buryachenko, 2013; Buryachenko, 2014c) that
some popular approaches (e.g., EMM and MTM) are related with
GIEs (even if this term is not used) at least in a sense that these
approaches constitute the methods of solutions of the GIEs. In its
turn, the methods of micromechanics are based on the solutions
for one (or a few) inclusion inside an infinite matrix subjected to
the homogeneous remote field. After substitution of the last partic-
ular solutions into GIEs, the obtained equations are solved by the
use of one or another closing assumption distinguished for the dif-
ferent methods. In the current paper, the presented sketch of
micromechanics is generalized to the operator form for the general
operator case of constitutive equations.

The outline of the paper is as follows. In Section 2 we present
the statistical description of the composite microstructure and
the basic field equations in the general operator form of linear con-
stitutive equations covering nonlocal and coupled phenomena. In
Section 3 the new operator form of GIE connecting the driving
fields and fluxes in a point being considered and the fields in the
surrounding points, are presented in terms of perturbators intro-
duced by a finite numbers of heterogeneities in the infinite media.
In Section 4 the operator form of GIEs is obtained for the effective
fields acting on each pair of heterogeneities. In Section 5 some
particular cases, asymptotic representations, and simplifications
obtained in the framework of the popular micromechanical
hypotheses and concepts are considered in parallel with analyses
of its connection with the known methods (such as, e.g., MTM
and MEFM). Section 6 is dedicated to obtaining of the general oper-
ator form of the method of integral equations for estimation of the
second moments of fields in the phases. In Section 7 one considers
the solutions for composites with the particular constitutive equa-
tions such as linear thermoelastic cases with the perfect and
imperfect interfaces, conductivity problem, problems for piezo-
electric and other coupled phenomena, composites with nonlocal
elastic properties of constituents, and the wave propagation in
composites with electromagnetic, optic and mechanical responses.
For lack of space, at the consideration of the particular methods of
solutions of GIEs in Section 7, the readers are referred only to the
references where these solutions were already analyzed and where
additional references (with the corresponding numerical and
experimental data) can be found.

The current paper is dedicated to generalization of the previous
results (Buryachenko, 2007b, 2010a,c, 2011a,c; Buryachenko and
Brun, 2011, 2012a,b, 2013) to its operator form solution for the

general cases of local and nonlocal problems, static and wave
motion phenomena for composite materials with statistically inho-
mogeneous structures containing both the coated or uncoated
inclusions of any shape and orientation with perfect and imperfect
interfaces and subjected to any number coupled or uncoupled,
homogeneous or inhomogeneous external fields of different phys-
ical nature.

2. Preliminaries

2.1. Statistical description of the composite microstructure

Let a full space Rd with a space dimensionality d (d ¼ 2 and
d ¼ 3 for 2-D and 3-D problems, respectively) contains a homoge-
neous matrix v ð0Þ and, in general, a statistically inhomogeneous set
X ¼ ðv iÞ of heterogeneity v i with indicator functions Vi and
bounded by the closed smooth surfaces Ci :¼ @v i ði ¼ 1;2; . . .Þ
defined by the relations CiðxÞ ¼ 0 (x 2 Ci), CiðxÞ > 0 (x 2 v i), and
CiðxÞ < 0 (x R v i). It is assumed that the heterogeneities can be
grouped into components (phases) v ðqÞ ðq ¼ 1;2; . . . ;NÞ with iden-
tical mechanical and geometrical properties (such as the shape,
size, orientation, and microstructure of heterogeneities).

It is assumed that the representative macrodomain w contains a
statistically large number of realizations a (providing validity of
the standard probability technique) of heterogeneities v i 2 v ðkÞ of
the constituent v ðkÞ ði ¼ 1;2; . . . ; k ¼ 1;2; . . . ;NÞ. A random event
a belongs to a sample space A, over which a probability density
pðx;aÞ is defined (see, e.g., Willis, 1981). For any given a, any ran-
dom function gðx;aÞ (e.g., g ¼ V ;V ðkÞ) is defined explicitly as one
particular member, with label a, of an ensemble realization. Then,
the mean, or ensemble average is defined by the angle brackets
enclosing the quantity g

hgiðxÞ ¼
Z
A

gðx;aÞpðx;aÞda: ð2:1Þ

No confusion will arise below in notation of the random quantity
gðx;aÞ if the label a is removed. One treats two material length
scales (see, e.g, Torquato, 2002): the macroscopic scale L, character-
izing the extent of w, and the microscopic scale a, related with the
heterogeneities v i. Moreover, one supposes that applied field varies
on a characteristic length scale K. The limit of our interests for both
the material scales and field one is

L� K P a: ð2:2Þ

All the random quantities under discussion are described by statis-
tically inhomogeneous random fields. In parallel with the random
indicator function Vðx;aÞ we use the random field Vd

kðx� xj;aÞ of
delta functions placed in the inclusion centers xk. For the alternative
description of the random structure of a composite material let us
introduce a conditional probability density uðv i;xi j v1;x1; . . . ;

vn;xnÞ, which is a probability densityfor finding a heterogeneity of
type i with the center xi in the domain v i, given that the fixed het-
erogeneities v1; . . . ;vn are centered at x1; . . . ;xn (see, e.g., Willis,
1978). The configuration ðv i;xiÞ is completely described by a
detailed marked density function uðv i;xi j v1; x1; . . . ;vn;xnÞ of the
centers of an inclusion with mark v i (which can contain information
about the inclusions such as the shape, size, orientation, and mate-
rial properties) being placed at xi (see for details Section 5.3.1 in
Buryachenko, 2007a). The notation uðv i; xi j; v1;x1; . . . ;vn;xnÞ
denotes the case xi – x1; . . . ;xn. In the case of statistically inhomo-
geneous media with homogeneous matrix (for so-called Function-
ally Graded Materials, FGM, see, e.g., Markworth et al., 1995;
Mortensen and Suresh, 1995) the conditional probability density
is not invariant with respect to translation

uðv i;xi j v1;x1; . . . ;vn;xnÞ–uðv i;xiþx jv1;x1þx; . . . ;vn;xnþxÞ; ð2:3Þ
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